import pandas as pd from sqlalchemy import create_engine import matplotlib.pyplot as plt import re import nltk from rake_nltk import Rake from rake_nltk import Metric Mysql_arguments = { 'user': 'adv_yswg', 'password': 'HCL1zcUgQesaaXNLbL37O5KhpSAy0c', 'host': 'rm-wz9yg9bsb2zf01ea4yo.mysql.rds.aliyuncs.com', 'port': 3306, 'database': 'selection', 'charset': 'utf8mb4', } def get_country_engine(site_name="us"): if site_name == 'us': db_ = 'mysql+pymysql://{}:{}@{}:{}/{}?charset={}'.format(*Mysql_arguments.values()) else: Mysql_arguments["database"] = f"selection_{site_name}" db_ = 'mysql+pymysql://{}:{}@{}:{}/{}?charset={}'.format(*Mysql_arguments.values()) engine = create_engine(db_) # , pool_recycle=3600 return engine engine = get_country_engine() # sql = f"select asin, content, rating from us_asin_comment order by asin limit 10000;" sql = f"select asin, content, rating from us_asin_comment where asin='B00B0RD2RA';" df_asin_comment = pd.read_sql(sql, con=engine) print(df_asin_comment.head())