import os import re import sys os.environ["PYARROW_IGNORE_TIMEZONE"] = "1" sys.path.append(os.path.dirname(sys.path[0])) # 上级目录 from utils.templates import Templates # from ..utils.templates import Templates from pyspark.sql.types import StringType, BooleanType, StructType, StructField, DoubleType, FloatType # 分组排序的udf窗口函数 from pyspark.sql.window import Window from pyspark.sql import functions as F from yswg_utils.common_udf import parse_weight_str class DimAsinStableInfo(Templates): def __init__(self, site_name='us'): super().__init__() self.site_name = site_name self.db_save = f'dim_asin_stable_info' self.spark = self.create_spark_object(app_name=f"{self.db_save}: {self.site_name}") self.df_asin_detail = self.spark.sql(f"select 1+1;") self.df_theme = self.spark.sql(f"select 1+1;") self.df_asin_img_url = self.spark.sql(f"select 1+1;") self.df_asin_title = self.spark.sql(f"select 1+1;") self.df_asin_weight = self.spark.sql(f"select 1+1;") self.df_asin_weight_new = self.spark.sql(f"select 1+1;") self.df_asin_weight_old = self.spark.sql(f"select 1+1;") self.df_asin_volume = self.spark.sql(f"select 1+1;") self.df_save = self.spark.sql(f"select 1+1;") self.df_save_std = self.spark.sql(f"select * from ods_search_term_zr limit 0;") self.partitions_by = ['site_name'] self.reset_partitions(100) self.window = Window.partitionBy(['asin']).orderBy(F.desc("date_info")) # 按照 date_info 列进行分区,并按照 date 列进行排序 # self.window = Window.partitionBy(['asin']).orderBy(F.desc("created_time")) # 按照 date_info 列进行分区,并按照 date 列进行排序 schema = StructType([ StructField('weight', FloatType(), True), StructField('weight_type', StringType(), True), ]) self.u_get_weight = F.udf(parse_weight_str, schema) self.weight_type = 'pounds' if site_name == 'us' else 'grams' self.db_save_vertical = f'dim_asin_title_info_vertical' # 主题竖表 # 注册自定义函数 (UDF) self.u_contains_digit_udf = F.udf(self.udf_contains_digit, BooleanType()) self.u_asin_volume_type = F.udf(self.udf_asin_volume_type, StringType()) # 定义 UDF 的返回类型,即一个包含三个 DoubleType 字段的 StructType schema = StructType([ StructField('length', DoubleType(), True), StructField('width', DoubleType(), True), StructField('height', DoubleType(), True) ]) self.u_extract_dimensions = F.udf(self.udf_extract_dimensions, schema) self.u_extract_dimensions_others = F.udf(self.udf_extract_dimensions_others, schema) schema = StructType([ StructField('asin_length', StringType(), True), StructField('asin_width', StringType(), True), StructField('asin_height', StringType(), True) ]) self.u_volume_sorted = F.udf(self.udf_volume_sorted, schema) # 注册自定义函数 (UDF) self.u_theme_pattern = F.udf(self.udf_theme_pattern, StringType()) # 其他变量 # self.pattern = str() # 正则匹配 self.theme_list_str = str() # 正则匹配 @staticmethod def udf_theme_pattern(title, theme_list_str): found_themes = [theme.strip() for theme in eval(theme_list_str) if theme in title] if found_themes: return ','.join(set(found_themes)) else: return None # 定义一个函数,检查字符串中是否包含数字 @staticmethod def udf_contains_digit(s): # return any(char.isdigit() for char in s) if s is None: return False return any(char.isdigit() for char in s) # 定义一个函数,将asin_volume进行分类 @staticmethod def udf_asin_volume_type(x): # pattern = r'\b\w+\b' pattern = r'[a-z]+' matches = re.findall(pattern, x) # 使用集合存储匹配的单词 type_set = set() for word in matches: if word in ['inches', 'inch']: type_set.add('inches') elif word in ['cm', 'centímetros', 'centimetres']: type_set.add('cm') elif word in ['milímetros', 'millimeter', 'mm']: type_set.add('mm') elif word in ['metros']: type_set.add('m') # 根据集合的长度返回结果 if len(type_set) == 1: return list(type_set)[0] elif len(type_set) >= 2: return ','.join(type_set) else: return 'none' @staticmethod def udf_extract_dimensions(volume_str, asin_volume_type): length, width, height = None, None, None dimensions = [] if asin_volume_type == 'cm,inches': num_inches = volume_str.find('inch') num_cm = volume_str.find('cm') volume_str = volume_str[:num_inches] if num_cm > num_inches else volume_str[num_cm:num_inches] dimensions = re.findall(r"(\d+(\.\d+)?)", volume_str) dimensions = [float(dim[0]) for dim in dimensions] # if asin_volume_type == 'inches': # dimensions = volume_str.split(' x ') # dimensions = [dim.split()[0] for dim in dimensions] # dimensions = [float(dim) if dim.replace('.', '', 1).isdigit() else None for dim in dimensions] # else: # if asin_volume_type == 'cm,inches': # # 保留inches # num_inches = volume_str.find('inch') # num_cm = volume_str.find('cm') # volume_str = volume_str[:num_inches] if num_cm > num_inches else volume_str[num_cm:num_inches] # # dimensions = re.findall(r"(\d+(\.\d+)?)", volume_str) # dimensions = [float(dim[0]) for dim in dimensions] if len(dimensions) == 1: length = dimensions[0] elif len(dimensions) == 2: if asin_volume_type == 'none': if "l" in volume_str and "w" in volume_str: length, width = dimensions elif "w" in volume_str and "h" in volume_str: width, height = dimensions elif "l" in volume_str and "h" in volume_str: length, height = dimensions elif "d" in volume_str and "w" in volume_str: length, width = dimensions elif "d" in volume_str and "h" in volume_str: length, height = dimensions else: length, width = dimensions elif len(dimensions) == 3: length, width, height = dimensions elif len(dimensions) >= 4: length, width, height = dimensions[:3] return (length, width, height) @staticmethod def udf_extract_dimensions_others(volume_str, asin_volume_type): length, width, height = None, None, None if asin_volume_type == 'cm': dimensions = re.findall(r"(\d+(\.\d+)?)", volume_str) dimensions = [float(dim[0]) for dim in dimensions] if len(dimensions) == 1: length = dimensions[0] elif len(dimensions) == 2: length = dimensions[0] width = dimensions[1] elif len(dimensions) >= 3: length, width, height = dimensions[:3] return (length, width, height) @staticmethod def udf_volume_sorted(asin_length, asin_weight, asin_height): # 如果输入数据中有None,替换为0 dimensions = [0 if x is None else x for x in [asin_length, asin_weight, asin_height]] # 对数据进行排序 dimensions.sort(reverse=True) return tuple(dimensions) def sort_by_latest(self, df): df = df.withColumn('row_number', F.row_number().over(self.window)) # 使用窗口函数为每个分区的行编号 df = df.filter(df.row_number == 1).drop('row_number') # 只保留每个分区中 row_number 最大的行,并删除 row_number 列 return df def read_data(self): if self.site_name == 'us': params = f" and (date_type='week' or (date_type='month' and date_info='2023-10') or (date_type in ('month_week', 'month') and date_info>='2023-11'))" else: params = f" and (date_type='week' or (date_type in ('month_week', 'month') and date_info>='2023-05'))" sql = f"select asin, img_url as asin_img_url, title as asin_title, weight, weight_str, volume as asin_volume, date_type, date_info, site_name, created_at as created_time " \ f"from ods_asin_detail where site_name='{self.site_name}' {params}" # and date_info='2023-27' limit 100000 print("sql:", sql) self.df_asin_detail = self.spark.sql(sql).cache() self.df_asin_detail.show(10, truncate=False) params = "" if self.site_name == 'us' else " limit 10" sql = f"select id as theme_id, theme_type_en, theme_en, theme_en_lower, theme_ch from ods_theme where site_name='us' {params};" print("sql:", sql) self.df_theme = self.spark.sql(sql).cache() self.df_theme.show(10, truncate=False) def handle_data(self): # 根据created_time时间来去重保留最新 window = Window.partitionBy(['asin']).orderBy(F.desc("created_time")) # 按照 date_info 列进行分区,并按照 date 列进行排序 self.df_asin_detail = self.df_asin_detail.withColumn('row_number', F.row_number().over(window)) # 使用窗口函数为每个分区的行编号 self.df_asin_detail = self.df_asin_detail.filter(self.df_asin_detail.row_number == 1).drop('row_number', 'created_time') # 只保留每个分区中 row_number 最大的行,并删除 row_number 列 self.handle_img_url() if self.site_name == 'usx': self.handle_title() else: sql = f"select asin, asin_title, asin_title_lower, crowd_counts, crowd_ids, element_counts, element_ids, festival_counts, festival_ids, sports_counts, sports_ids, style_counts, style_ids, " \ f"theme_counts, theme_ids, material_counts, material_ids, date_info_title from {self.db_save} limit 0" self.df_asin_title = self.spark.sql(sql).cache() self.handle_weight() self.handle_volume() self.df_save = self.df_asin_detail.select("asin", "date_info", "site_name") self.df_save = self.sort_by_latest(df=self.df_save) self.df_save = self.df_save.join( self.df_asin_img_url, on='asin', how='left' ).join( self.df_asin_title, on='asin', how='left' ).join( self.df_asin_weight, on='asin', how='left' ).join( self.df_asin_volume, on='asin', how='left' ) # if self.site_name != 'us': # # 由于其他站点没有这些主题数据 # self.df_save = self.df_save_std.unionByName(self.df_save, allowMissingColumns=True) # self.df_save = self.df_save.drop("created_time") print("self.df_save.columns:", self.df_save.columns) # self.df_save.show(10, truncate=False) def handle_img_url(self): self.df_asin_img_url = self.df_asin_detail.select("asin", "asin_img_url", "date_info").filter("asin_img_url is not null") self.df_asin_img_url = self.df_asin_img_url.filter(self.df_asin_img_url.asin_img_url.contains('amazon')) # 保留包含amazon的字符串记录 self.df_asin_img_url = self.sort_by_latest(df=self.df_asin_img_url) for i in range(1, 10, 1): self.df_asin_img_url = self.df_asin_img_url.withColumn(f"asin_trun_{i}", F.substring(self.df_asin_img_url.asin, 1, i)) self.df_asin_img_url = self.df_asin_img_url.withColumn( "asin_img_path", F.concat( F.lit("/"), self.df_asin_img_url.asin_trun_1, F.lit("/"), self.df_asin_img_url.asin_trun_2, F.lit("/"), self.df_asin_img_url.asin_trun_3, F.lit("/"), self.df_asin_img_url.asin_trun_4, F.lit("/"), self.df_asin_img_url.asin_trun_5, F.lit("/"), self.df_asin_img_url.asin_trun_6, F.lit("/") ) ) self.df_asin_img_url = self.df_asin_img_url.withColumnRenamed("date_info", "date_info_img_url") print("self.df_asin_img_url.columns:", self.df_asin_img_url.columns) # self.df_asin_img_url.show(10, truncate=False) def handle_title(self): # 过滤null和none字符串 self.df_asin_title = self.df_asin_detail.select("asin", "asin_title", "date_info").filter("asin_title is not null and asin_title not in ('none', 'null', 'nan')") # 小写 self.df_asin_title = self.df_asin_title.withColumn("asin_title_lower", F.lower(self.df_asin_title["asin_title"])) # 小写 # self.df_asin_title.show(10, truncate=False) # 取最新的date_info对应的title self.df_asin_title = self.sort_by_latest(df=self.df_asin_title) # self.df_asin_title.show(10, truncate=False) # 匹配主题数据 self.handle_title_theme() # 存储一份主题竖表数据 self.reset_partitions(partitions_num=100) self.save_data_common( df_save=self.df_save_vertical, db_save=self.db_save_vertical, partitions_num=self.partitions_num, partitions_by=self.partitions_by ) def handle_title_theme(self): pdf_theme = self.df_theme.toPandas() theme_list = list(set(pdf_theme.theme_en_lower)) self.theme_list_str = str([f" {theme} " for theme in theme_list]) print("self.theme_list_str:", self.theme_list_str[:100]) # 匹配宽表时用到 df_asin_title = self.df_asin_title.cache() # 后面用作匹配asin_title self.df_asin_title = self.df_asin_title.withColumn("asin_title_lower", F.concat(F.lit(" "), "asin_title_lower", F.lit(" "))) # 标题两头加空字符串用来匹配整个词 self.df_asin_title = self.df_asin_title.withColumn("theme_en_lower", self.u_theme_pattern('asin_title_lower', F.lit(self.theme_list_str))) # 将列拆分为数组多列 self.df_asin_title = self.df_asin_title.withColumn("theme_en_lower", F.split(self.df_asin_title["theme_en_lower"], ",")) # 将数组合并到多行 self.df_asin_title = self.df_asin_title.withColumn("theme_en_lower", F.explode(self.df_asin_title["theme_en_lower"])) self.df_asin_title = self.df_asin_title.join( self.df_theme, on=['theme_en_lower'], how='left' # 改成inner, 这样避免正则匹配结果不准 ) # 1. 竖表 self.df_save_vertical = self.df_asin_title.cache() self.df_save_vertical = self.df_save_vertical.withColumn("site_name", F.lit(self.site_name)) print("self.df_save_vertical.columns:", self.df_save_vertical.columns) # print("self.df_save_vertical.count():", self.df_save_vertical.count()) # self.df_save_vertical.show(30, truncate=False) # self.df_save_vertical.filter("theme_en_lower is not null").show(30, truncate=False) # 2. 宽表 self.df_asin_title = self.df_asin_title.drop_duplicates(['asin', 'theme_type_en', 'theme_ch']) self.df_asin_title = self.df_asin_title.withColumn("theme_type_en_counts", F.concat("theme_type_en", F.lit("_counts"))) self.df_asin_title = self.df_asin_title.withColumn("theme_type_en_ids", F.concat("theme_type_en", F.lit("_ids"))) # self.df_asin_title.filter('theme_type_en_counts is null').show(20, truncate=False) # 没有记录 self.df_asin_title = self.df_asin_title.filter('theme_type_en_counts is not null') pivot_df1 = self.df_asin_title.groupBy("asin").pivot("theme_type_en_counts").agg( F.expr("IFNULL(count(*), 0) AS value")) pivot_df1 = pivot_df1.na.fill(0) pivot_df2 = self.df_asin_title.groupBy("asin").pivot("theme_type_en_ids").agg( F.concat_ws(",", F.collect_list("theme_id"))) # pivot_df1.show(30, truncate=False) # pivot_df2.show(30, truncate=False) # self.df_save_wide = df_asin_title.join( self.df_asin_title = df_asin_title.join( pivot_df1, on='asin', how='left' ).join( pivot_df2, on='asin', how='left' ) # self.df_save_wide.show(30, truncate=False) self.df_asin_title = self.df_asin_title.withColumnRenamed("date_info", "date_info_title") self.df_asin_title = self.df_asin_title.drop("site_name") print("self.df_asin_title.columns:", self.df_asin_title.columns) # self.df_asin_title.show(30, truncate=False) def handle_weight(self): self.df_asin_weight_new = self.df_asin_detail.filter("(date_info >= '2023-18' and date_type='week') or (date_type in ('month', 'month_week'))").select("asin", "weight", "weight_str", "date_info", "site_name").cache() self.df_asin_weight_old = self.df_asin_detail.filter("date_info < '2023-18' and date_type='week'").select("asin", "weight", "weight_str", "date_info", "site_name").cache() self.handle_weight_new() self.handle_weight_old() print("self.df_asin_weight.columns:", self.df_asin_weight.columns) print("self.df_asin_weight_old.columns:", self.df_asin_weight_old.columns) self.df_asin_weight = self.df_asin_weight_new.unionByName(self.df_asin_weight_old, allowMissingColumns=True) self.df_asin_weight = self.sort_by_latest(df=self.df_asin_weight) # 将weight列中的'none'转为null,并转为浮点数类型 self.df_asin_weight = self.df_asin_weight.withColumn("weight", F.when(F.col("weight") == 'none', None).otherwise( F.col("weight").cast(FloatType()))) # weight列中小于等于0.001的值设为0.001 self.df_asin_weight = self.df_asin_weight.withColumn("weight", F.when(F.col("weight") <= 0.001, 0.001).otherwise(F.col("weight"))) # 保留4位小数 self.df_asin_weight = self.df_asin_weight.withColumn("weight", F.round(self.df_asin_weight["weight"], 4)) # self.df_asin_weight.show(20, truncate=False) self.df_asin_weight = self.df_asin_weight.withColumnRenamed( "weight_str", "asin_weight_str" ).withColumnRenamed( "weight", "asin_weight" ).withColumnRenamed( "weight_type", "asin_weight_type" ) self.df_asin_weight = self.df_asin_weight.withColumnRenamed("date_info", "date_info_weight") self.df_asin_weight = self.df_asin_weight.drop("site_name") print("self.df_asin_weight.columns:", self.df_asin_weight.columns) # self.df_asin_title.show(30, truncate=False) def handle_weight_new(self): print("开始处理重量数据: 2023-18周之后") # 将列类型转为字符串并转为小写 self.df_asin_weight_new = self.df_asin_weight_new.withColumn("weight_str", F.lower(F.col("weight_str").cast(StringType()))) # 提取体积字符串中的weight_info, weight_type self.df_asin_weight_new = self.df_asin_weight_new.withColumn('weight_detail', self.u_get_weight('weight_str', 'site_name')) self.df_asin_weight_new = self.df_asin_weight_new \ .withColumn('weight', self.df_asin_weight_new.weight_detail.getField('weight')) \ .withColumn('weight_type', self.df_asin_weight_new.weight_detail.getField('weight_type')) \ .drop('weight_detail') # # 将weight列中的'none'转为null,并转为浮点数类型 # self.df_asin_weight_new = self.df_asin_weight_new.withColumn("weight", F.when(F.col("weight") == 'none', None).otherwise( # F.col("weight").cast(FloatType()))) # # # weight列中小于等于0.001的值设为0.001 # self.df_asin_weight = self.df_asin_weight.withColumn("weight", F.when(F.col("weight") <= 0.001, 0.001).otherwise(F.col("weight"))) # # 将weight_str列中的'none'转为null # self.df_asin_weight = self.df_asin_weight.withColumn("weight_str", F.when(F.col("weight_str") == 'none', None).otherwise(F.col("weight_str"))) def handle_weight_old(self): print("开始处理重量数据: 2023-18周之前") self.df_asin_weight_old = self.df_asin_weight_old.withColumn("weight_type", F.lit(self.weight_type)) window = Window.partitionBy(['asin']).orderBy(self.df_asin_weight_old.date_info.desc()) self.df_asin_weight_old = self.df_asin_weight_old.withColumn( "row_number", F.row_number().over(window) ) self.df_asin_weight_old = self.df_asin_weight_old.withColumn('row_number', F.row_number().over(window)) # 使用窗口函数为每个分区的行编号 self.df_asin_weight_old = self.df_asin_weight_old.filter(self.df_asin_weight_old.row_number == 1).drop( 'row_number') # 只保留每个分区中 row_number 最大的行,并删除 row_number 列 def handle_volume(self): self.df_asin_volume = self.df_asin_detail.select("asin", "asin_volume", "date_info") if self.site_name == 'us': self.handle_volume_us() else: self.handle_volume_others() self.df_asin_volume = self.df_asin_volume.withColumnRenamed("date_info", "date_info_volume") self.df_asin_volume = self.df_asin_volume.drop("site_name") self.handle_volume_sorted() print("self.df_asin_volume.columns:", self.df_asin_volume.columns) # self.df_asin_volume.show(30, truncate=False) def handle_volume_us(self): self.handle_filter_dirty_data() # self.handle_type_inches() # self.handle_type_cm() df_inches = self.handle_asin_volume_types_to_dimensions(asin_volume_type='inches') df_cm = self.handle_asin_volume_types_to_dimensions(asin_volume_type='cm') df_cm_inches = self.handle_asin_volume_types_to_dimensions(asin_volume_type='cm,inches') df_none = self.handle_asin_volume_types_to_dimensions(asin_volume_type='none') df_none_not_null = df_none.filter(~(df_none.length.isNull() & df_none.width.isNull() & df_none.height.isNull())) df_none_null = df_none.filter(df_none.length.isNull() & df_none.width.isNull() & df_none.height.isNull()) df_none_not_null = df_none_not_null.withColumn("asin_volume_type", F.lit("inches")) print("df_none_not_null, df_none_null:", df_none_not_null.count(), df_none_null.count()) # self.df_save = pd.concat([df_inches, df_cm, df_cm_inches, df_none]) # 假设 df_inches、df_cm、df_cm_inches 和 df_none 都是 PySpark DataFrame self.df_asin_volume = df_inches.union(df_cm).union(df_cm_inches).union(df_none_not_null).union(df_none_null) self.df_asin_volume = self.df_asin_volume.drop("asin_volume_flag") self.df_asin_volume = self.df_asin_volume.withColumnRenamed("length", "asin_length"). \ withColumnRenamed("width", "asin_width"). \ withColumnRenamed("height", "asin_height") def handle_filter_dirty_data(self): # 将 asin_volume 列转换为小写 self.df_asin_volume = self.df_asin_volume.withColumn("asin_volume", F.lower(self.df_asin_volume["asin_volume"])) # 使用自定义函数创建新列 asin_volume_flag self.df_asin_volume = self.df_asin_volume.withColumn("asin_volume_flag", self.u_contains_digit_udf(self.df_asin_volume["asin_volume"])) # 假设 df 是一个 PySpark DataFrame,asin_volume_flag 是 DataFrame 中的一列 # self.df_asin_volume.groupBy('asin_volume_flag').agg(F.count('asin_volume_flag')).show() # self.df_asin_volume.show() self.df_asin_volume = self.df_asin_volume.filter('asin_volume_flag is True') # self.df_asin_volume.groupBy('asin_volume_flag').agg(F.count('asin_volume_flag')).show() # self.df_asin_volume.show() self.df_asin_volume = self.df_asin_volume.withColumn("asin_volume_type", self.u_asin_volume_type(self.df_asin_volume["asin_volume"])) self.df_asin_volume.groupBy('asin_volume_type').agg(F.count('asin_volume_type')).show() self.df_asin_volume.show() # 假设 df 是一个 PySpark DataFrame,date_info 是 DataFrame 中的一列 window = Window.partitionBy('asin').orderBy(F.desc('date_info')) # 按照 date_info 列进行分区,并按照 date 列进行排序 self.df_asin_volume = self.df_asin_volume.withColumn('row_number', F.row_number().over(window)) # 使用窗口函数为每个分区的行编号 self.df_asin_volume = self.df_asin_volume.filter(self.df_asin_volume.row_number == 1).drop('row_number') # 只保留每个分区中 row_number 最大的行,并删除 row_number 列 self.df_asin_volume.groupBy('asin_volume_type').agg(F.count('asin_volume_type')).show() self.df_asin_volume.show() def handle_asin_volume_types_to_dimensions(self, asin_volume_type='inches'): df = self.df_asin_volume.filter(f'asin_volume_type="{asin_volume_type}"').cache() # 使用 UDF 提取长宽高并添加新的列 df = df.withColumn('dimensions', self.u_extract_dimensions('asin_volume', F.lit(asin_volume_type))) # 将新的列拆分成三个列并删除 dimensions 列 df = df \ .withColumn('length', df.dimensions.getField('length')) \ .withColumn('width', df.dimensions.getField('width')) \ .withColumn('height', df.dimensions.getField('height')) \ .drop('dimensions') df.show(10, truncate=False) # # 假设 df_asin_none 是一个 PySpark DataFrame,length、width 和 height 是 DataFrame 中的列 # df_null = df.filter(df.length.isNull() & df.width.isNull() & df.height.isNull()) # print("asin_volume_type, df_null:", asin_volume_type, df_null.count()) # df_null.show(50, truncate=False) return df def handle_volume_others(self): self.handle_filter_dirty_data() # 提取体积字符串中的length, width, height self.df_asin_volume = self.df_asin_volume.withColumn('dimensions', self.u_extract_dimensions_others('asin_volume', 'asin_volume_type')) self.df_asin_volume = self.df_asin_volume \ .withColumn('asin_length', self.df_asin_volume.dimensions.getField('length')) \ .withColumn('asin_width', self.df_asin_volume.dimensions.getField('width')) \ .withColumn('asin_height', self.df_asin_volume.dimensions.getField('height')) \ .drop('dimensions') self.df_asin_volume = self.df_asin_volume.drop("asin_volume_flag") def handle_volume_sorted(self): self.df_asin_volume = self.df_asin_volume.withColumn('dimensions', self.u_volume_sorted('asin_length', 'asin_width', 'asin_height')) # 将新的列拆分成三个列并删除 dimensions 列 self.df_asin_volume = self.df_asin_volume \ .withColumn('asin_length_sorted', self.df_asin_volume.dimensions.getField('asin_length')) \ .withColumn('asin_width_sorted', self.df_asin_volume.dimensions.getField('asin_width')) \ .withColumn('asin_height_sorted', self.df_asin_volume.dimensions.getField('asin_height')) \ .drop('dimensions') # self.df_asin_volume.show(10, truncate=False) self.df_asin_volume = self.df_asin_volume.replace({'0': None}) self.df_asin_volume = self.df_asin_volume.withColumn('asin_length_sorted', F.col('asin_length_sorted').cast('double')) \ .withColumn('asin_width_sorted', F.col('asin_width_sorted').cast('double')) \ .withColumn('asin_height_sorted', F.col('asin_height_sorted').cast('double')) self.df_asin_volume.show(10, truncate=False) if __name__ == '__main__': site_name = sys.argv[1] # 参数1:站点 handle_obj = DimAsinStableInfo(site_name=site_name) handle_obj.run()