# import os # import re # import sys # # import numpy as np # import pandas as pd # # sys.path.append(os.path.dirname(sys.path[0])) # 上级目录 # from pyspark.storagelevel import StorageLevel # from utils.templates import Templates # # from ..utils.templates import Templates # import faiss # import numpy as np # from pyspark.sql.functions import pandas_udf, PandasUDFType # import pandas as pd # # # # 定义一个Pandas UDF,该UDF在每个分区上加载索引并进行查询 # @pandas_udf('int', PandasUDFType.SCALAR) # def find_nearest_neighbors(series): # # 加载索引 # index = faiss.read_index("/home/ffman/tmp/my_index.faiss") # # 查询最近的5个邻居 # _, I = index.search(np.array(series.tolist()).astype('float32'), 5) # return pd.Series(I[:, 0]) # 返回最近的邻居的索引 # # # class Search(Templates): # # def __init__(self, site_name='us'): # super(Search, self).__init__() # self.site_name = site_name # self.db_save = f'image_search' # self.spark = self.create_spark_object(app_name=f"{self.db_save}: {self.site_name}") # self.df_save = self.spark.sql(f"select 1+1;") # # def read_data(self): # self.df_save = self.spark.read.parquet("hdfs://hadoop5:8020/home/ffman/faiss/embeddings/folder") # self.df_save.show(20) # # # 将嵌入向量从数据中提取出来,注意这会将所有的数据加载到内存中,如果数据太大可能会出现内存问题 # data = self.df_save.collect() # embeddings = np.array([row['embedding'] for row in data]) # # # 创建Faiss索引 # print("开始创建索引") # index = faiss.IndexFlatL2(512) # index.add(embeddings) # faiss.write_index(index, "/home/ffman/tmp/my_index.faiss") # print("索引创建完成+存储hdfs完成") # # 在驱动程序上构建索引并保存到磁盘 # # embeddings = np.random.rand(1000, 512).astype('float32') # 假设你的嵌入向量 # # index = faiss.IndexFlatL2(embeddings.shape[1]) # # index.add(embeddings) # # # 假设query是你要查询的嵌入向量 # query = np.random.rand(512).astype('float32') # # # 查找最近的5个邻居 # D, I = index.search(query.reshape(1, -1), 5) # # # 打印结果 # print("Distances: ", D) # print("Indices: ", I) # # def handle_data(self): # # 在每个分区上进行查询 # df = self.df_save.withColumn('nearest_neighbor', find_nearest_neighbors(self.df_save['embedding'])) # df.show(20) # quit() # # # if __name__ == '__main__': # site_name = sys.argv[1] # 参数1:站点 # handle_obj = Search() # handle_obj.run() import sys import os import faiss import numpy as np from pyspark.sql.functions import pandas_udf, PandasUDFType import pandas as pd from pyspark.sql import SparkSession from pyspark.sql.types import IntegerType sys.path.append(os.path.dirname(sys.path[0])) # 上级目录 from utils.templates import Templates # from ..utils.templates import Templates class Search(Templates): def __init__(self, site_name='us'): super(Search, self).__init__() self.site_name = site_name self.db_save = f'image_search' self.spark = self.create_spark_object(app_name=f"{self.db_save}: {self.site_name}") self.data_path = "hdfs://hadoop5:8020/home/ffman/faiss/embeddings/folder" self.index_path = "/home/ffman/tmp/my_index.faiss" @staticmethod @pandas_udf(IntegerType(), PandasUDFType.SCALAR) def find_nearest_neighbors(series): # 加载索引 index = faiss.read_index("/home/ffman/tmp/my_index.faiss") # 查询最近的5个邻居 _, I = index.search(np.array(series.tolist()).astype('float32'), 5) return pd.Series(I[:, 0]) # 返回最近的邻居的索引 def load_data_and_create_index(self): df = self.spark.read.parquet(self.data_path) data = df.collect() embeddings = np.array([row['embedding'] for row in data]) # 创建Faiss索引并保存 index = faiss.IndexFlatL2(512) index.add(embeddings) faiss.write_index(index, self.index_path) def handle_data(self): df = self.spark.read.parquet(self.data_path) df = df.withColumn('nearest_neighbor', self.find_nearest_neighbors(df['embedding'])) df.show(20) if __name__ == '__main__': # 创建Spark会话 # spark = SparkSession.builder \ # .appName('example') \ # .getOrCreate() # 创建搜索对象 site_name = sys.argv[1] # 参数1:站点 search = Search(site_name=site_name) # 加载数据并创建索引 search.load_data_and_create_index() # 查询最近邻 search.handle_data()