import os import sys sys.path.append(os.path.dirname(sys.path[0])) # 上级目录 from utils.hdfs_utils import HdfsUtils from utils.spark_util import SparkUtil from utils.common_util import CommonUtil from utils.templates import Templates from pyspark.sql import functions as F from pyspark.sql.functions import concat_ws class DwtAmazonReport(Templates): def __init__(self, site_name='us', date_type="month", date_info='2021-10'): super().__init__() self.site_name = site_name self.date_type = date_type self.date_info = date_info self.db_save = f'dwt_amazon_report' self.spark = self.create_spark_object( app_name=f"{self.db_save}: {self.site_name}, {self.date_type}, {self.date_info}") self.reset_partitions(partitions_num=120) self.partitions_by = ['site_name', 'date_type', 'date_info'] self.df_dwd_new = self.spark.sql(f"select 1+1;") self.df_dwd_old = self.spark.sql(f"select 1+1;") self.df_joined = self.spark.sql(f"select 1+1;") self.df_save = self.spark.sql(f"select 1+1;") def read_data(self): # 从dwd层读取本月数据 sql1 = f""" select asin, monthly_sales as new_monthly_sales, zr_count as new_zr_count, sp_count as new_sp_count, total_count as new_total_count, date_info as new_date_info_list from dwd_amazon_report where site_name = '{self.site_name}' and date_type = '{self.date_type}' and date_info = '{self.date_info}'; """ print(sql1) self.df_dwd_new = self.spark.sql(sqlQuery=sql1).repartition(15, 'asin').cache() self.df_dwd_new.show(10, truncate=True) # 从dwt层读取上月数据 date_info_pre = CommonUtil.get_month_offset(self.date_info, -1) sql2 = f""" select asin, monthly_sales as old_monthly_sales, zr_count as old_zr_count, sp_count as old_sp_count, total_count as old_total_count, date_info_list as old_date_info_list from dwt_amazon_report where site_name = '{self.site_name}' and date_type = '{self.date_type}' and date_info = '{date_info_pre}'; """ print(sql2) self.df_dwd_old = self.spark.sql(sqlQuery=sql2).repartition(15, 'asin').cache() self.df_dwd_old.show(10, truncate=True) def handle_data(self): hdfs_path = f"/home/{SparkUtil.DEF_USE_DB}/dwt/{self.db_save}/site_name={self.site_name}/date_type={self.date_type}/date_info={self.date_info}" print(f"清除hdfs目录中.....{hdfs_path}") HdfsUtils.delete_hdfs_file(hdfs_path) # 关联后的列名 join_columns = ['monthly_sales', 'zr_count', 'sp_count', 'total_count', 'date_info_list'] # 获取历史df对象中,date_info的数量,用来确定关联不到的历史asin填充多少个 -1 old_date_info_first = self.df_dwd_old.select('old_date_info_list').distinct().first() if old_date_info_first is None: old_date_info_list = None old_date_info_list_len = 0 else: old_date_info_list = old_date_info_first[0] old_date_info_list_len = len(old_date_info_list.split(',')) fillna_old = ('-1,' * old_date_info_list_len).rstrip(',') # 本月数据如果关联不上,填充一个 -1 fillna_new = '-1' # 关联df,并填充null值 self.df_joined = self.df_dwd_new.join( self.df_dwd_old, on='asin', how='full' ) for col in join_columns: self.df_joined = self.df_joined.fillna({'old_' + col: fillna_old}) self.df_joined = self.df_joined.fillna({'new_' + col: fillna_new}) # 填充date_info_list self.df_joined = self.df_joined.withColumn( "old_date_info_list", F.lit(old_date_info_list) ).withColumn( "new_date_info_list", F.lit(self.date_info) ) # 拼接历史数据和本月数据,生成新的列 if old_date_info_first is None: for col in join_columns: self.df_joined = self.df_joined.withColumn( col, self.df_joined['new_' + col] ) else: for col in join_columns: self.df_joined = self.df_joined.withColumn( col, concat_ws(',', self.df_joined['old_' + col], self.df_joined['new_' + col]) ) # 选择需要的列 selected_columns = ['asin'] + join_columns self.df_save = self.df_joined.select(selected_columns) self.df_save = self.df_save.withColumn( "weekly_sales", F.lit(None) ).withColumn( "weekly_views", F.lit(None) ).withColumn( "monthly_views", F.lit(None) ).withColumn( "site_name", F.lit(self.site_name) ).withColumn( "date_type", F.lit(self.date_type) ).withColumn( "date_info", F.lit(self.date_info) ) if __name__ == '__main__': site_name = sys.argv[1] date_type = sys.argv[2] date_info = sys.argv[3] if (site_name in ['us', 'uk', 'de']) and (date_type == 'month') and (date_info >= '2024-04'): handle_obj = DwtAmazonReport(site_name=site_name, date_type=date_type, date_info=date_info) handle_obj.run() else: print("暂不计算该维度数据!") quit()