import os import re import sys import time import numpy as np import pandas as pd sys.path.append(os.path.dirname(sys.path[0])) # 上级目录 from pyspark.storagelevel import StorageLevel from utils.templates import Templates # from ..utils.templates import Templates import faiss import numpy as np from pyspark.sql.functions import pandas_udf, PandasUDFType import pandas as pd # # 定义一个Pandas UDF,该UDF在每个分区上加载索引并进行查询 # @pandas_udf('int', PandasUDFType.SCALAR) # def find_nearest_neighbors(series): # # 加载索引 # index = faiss.read_index("/home/ffman/tmp/my_index.faiss") # # 查询最近的5个邻居 # _, I = index.search(np.array(series.tolist()).astype('float32'), 5) # return pd.Series(I[:, 0]) # 返回最近的邻居的索引 class Search(Templates): def __init__(self, site_name='us'): super(Search, self).__init__() self.site_name = site_name self.db_save = f'image_search' self.spark = self.create_spark_object(app_name=f"{self.db_save}: {self.site_name}") self.df_save = self.spark.sql(f"select 1+1;") def read_data(self): self.df_save = self.spark.read.parquet("hdfs://hadoop5:8020/home/ffman/faiss/embeddings/folder") self.df_save.show(20) # 将嵌入向量从数据中提取出来,注意这会将所有的数据加载到内存中,如果数据太大可能会出现内存问题 data = self.df_save.collect() embeddings = np.array([row['embedding'] for row in data]) # 创建Faiss索引 print("开始创建索引") index = faiss.IndexFlatL2(512) index.add(embeddings) faiss.write_index(index, "/home/ffman/tmp/my_index.faiss") print("索引创建完成+存储hdfs完成") # 在驱动程序上构建索引并保存到磁盘 # embeddings = np.random.rand(1000, 512).astype('float32') # 假设你的嵌入向量 # index = faiss.IndexFlatL2(embeddings.shape[1]) # index.add(embeddings) while True: # 假设query是你要查询的嵌入向量 query = np.random.rand(512).astype('float32') print("query:", query.shape) # 查找最近的5个邻居 D, I = index.search(query.reshape(1, -1), 5) # 打印结果 print("Distances: ", D) print("Indices: ", I) time.sleep(1) def handle_data(self): # 在每个分区上进行查询 # df = self.df_save.withColumn('nearest_neighbor', find_nearest_neighbors(self.df_save['embedding'])) # df.show(20) quit() if __name__ == '__main__': site_name = sys.argv[1] # 参数1:站点 handle_obj = Search() handle_obj.run()