import json import os import re import sys import time import traceback import zlib import pandas as pd import redis from datetime import datetime sys.path.append(os.path.dirname(sys.path[0])) # 上级目录 from utils.templates import Templates # from ..utils.templates import Templates from utils.templates_mysql import TemplatesMysql # from ..utils.templates_mysql import TemplatesMysql from pyspark.sql.types import IntegerType from pyspark.sql import functions as F from pyspark.sql.types import * from yswg_utils.common_udf import udf_rank_and_category # from ..yswg_utils.common_udf import udf_rank_and_category from yswg_utils.common_df import get_node_first_id_df class DimStAsinInfo(Templates): def __init__(self, site_name='us', date_type="day", date_info='2022-10-01', key_size=100000): super().__init__() self.site_name = site_name self.date_type = date_type self.date_info = date_info self.key_size = key_size # 连接到Redis服务器 self.redis_db = { "us": 0, "uk": 1, "de": 2, "es": 3, "fr": 4, "it": 5, } self.client = redis.Redis(host='192.168.10.224', port=6379, db=self.redis_db[self.site_name], password='yswg2023') self.db_save = f'kafka_test' self.spark = self.create_spark_object( app_name=f"{self.db_save}: {self.site_name},{self.date_type}, {self.date_info}") self.get_date_info_tuple() self.df_save = self.spark.sql(f"select 1+1;") self.df_st_asin = self.spark.sql(f"select 1+1;") self.df_bs_report = self.spark.sql(f"select 1+1;") self.df_asin_bs = self.spark.sql(f"select 1+1;") self.df_asin_templates = self.spark.sql("select asin_zr_counts, asin_sp_counts, asin_sb1_counts,asin_sb2_counts,asin_sb3_counts,asin_ac_counts,asin_bs_counts,asin_er_counts,asin_tr_counts from dwd_asin_measure limit 0") self.df_asin_counts = self.spark.sql("select asin_zr_counts, asin_sp_counts, asin_sb1_counts,asin_sb2_counts,asin_sb3_counts,asin_ac_counts,asin_bs_counts,asin_er_counts,asin_tr_counts from dwd_asin_measure limit 0") self.schema = self.init_schema() # self.u_rank_and_category = self.spark.udf.register("u_rank_and_category", udf_rank_and_category, schema) schema = StructType([ StructField('asin_bs_cate_1_rank', StringType(), True), StructField('rank_and_category', StringType(), True), ]) self.u_rank_and_category = self.spark.udf.register("u_rank_and_category", self.udf_rank_and_category, schema) self.u_cal_crc32 = self.spark.udf.register("u_cal_crc32", self.udf_cal_crc32, IntegerType()) self.u_cal_bkdr = self.spark.udf.register("u_cal_bkdr", self.udf_cal_bkdr, IntegerType()) self.pattern_1_rank_str = { "us": "(\d+).*?See Top 100 in ", "uk": "(\d+).*?See Top 100 in ", "de": "(\d+).*?Siehe Top 100 in ", "es": "(\d+).*?Ver el Top 100 en ", "fr": "(\d+).*?Voir les 100 premiers en ", "it": "(\d+).*?Visualizza i Top 100 nella categoria " } # 匹配一级分类的排名 self.pattern_str = { "us": "(\d+ in [\w&' ]+)", "uk": "(\d+ in [\w&' ]+)", "de": "Nr. (\d+ in [\w&' ]+)", "es": "nº(\d+ en [\w&' ]+)", "fr": "(\d+ en [\w&' ]+)", "it": "n. (\d+ in [\w&' ]+)", } # 匹配排名和分类 self.replace_str = { "us": "See Top 100 in ", "uk": "See Top 100 in ", "de": "Siehe Top 100 in ", "es": "Ver el Top 100 en ", "fr": "Voir les 100 premiers en ", "it": "Visualizza i Top 100 nella categoria ", } # 去掉top100匹配 # 连接mysql self.engine = self.get_connection() def get_connection(self): return TemplatesMysql(site_name="us").mysql_connect() def judge_spider_asin_detail_is_finished(self): while True: try: sql = f'SELECT * from workflow_progress WHERE page="ASIN详情" and site_name="{self.site_name}" and date_type="{self.date_type}" and date_info="{self.date_info}" and status_val=3' df = pd.read_sql(sql, con=self.engine) if df.shape[0] == 1: print(f"ASIN详情状态为3, 抓取完成并终止程序, site_name:{self.site_name}, date_type:{self.date_type}, date_info:{self.date_info}") self.spark.stop() quit() # 退出程序 break except Exception as e: print(e, traceback.format_exc()) time.sleep(10) self.engine = self.get_connection() @staticmethod def init_schema(): schema = StructType([ StructField("asin", StringType(), True), StructField("week", StringType(), True), StructField("title", StringType(), True), StructField("img_url", StringType(), True), StructField("rating", StringType(), True), StructField("total_comments", StringType(), True), StructField("price", FloatType(), True), StructField("rank", StringType(), True), StructField("category", StringType(), True), StructField("launch_time", StringType(), True), StructField("volume", StringType(), True), StructField("weight", StringType(), True), StructField("page_inventory", IntegerType(), True), StructField("buy_box_seller_type", IntegerType(), True), StructField("asin_vartion_list", IntegerType(), True), StructField("title_len", IntegerType(), True), StructField("img_num", IntegerType(), True), StructField("img_type", StringType(), True), StructField("activity_type", StringType(), True), StructField("one_two_val", StringType(), True), StructField("three_four_val", StringType(), True), StructField("eight_val", StringType(), True), StructField("qa_num", IntegerType(), True), StructField("five_star", IntegerType(), True), StructField("four_star", IntegerType(), True), StructField("three_star", IntegerType(), True), StructField("two_star", IntegerType(), True), StructField("one_star", IntegerType(), True), StructField("low_star", IntegerType(), True), StructField("together_asin", StringType(), True), StructField("brand", StringType(), True), StructField("ac_name", StringType(), True), StructField("material", StringType(), True), StructField("node_id", StringType(), True), StructField("data_type", IntegerType(), True), StructField("sp_num", StringType(), True), StructField("describe", StringType(), True), StructField("date_info", StringType(), True), StructField("weight_str", StringType(), True), StructField("package_quantity", StringType(), True), StructField("pattern_name", StringType(), True), StructField("seller_id", StringType(), True), StructField("variat_num", IntegerType(), True), StructField("site_name", StringType(), True), StructField("best_sellers_rank", StringType(), True), StructField("best_sellers_herf", StringType(), True), StructField("account_url", StringType(), True), StructField("account_name", StringType(), True), StructField("parentAsin", StringType(), True), StructField("asinUpdateTime", StringType(), True), ]) return schema @staticmethod def udf_cal_crc32(asin, key_size): # crc32算法 + 取余 # 获取asin字符串的字节表示形式 bytes_str = bytes(asin, 'utf-8') # 使用zlib计算CRC-32校验和 checksum = zlib.crc32(bytes_str) # 获取32位的二进制补码 checksum_signed = (checksum & 0xFFFFFFFF) - (1 << 32) if checksum & (1 << 31) else checksum def java_mod(x, y): # return x % y if x * y > 0 else x % y - y # 区分正负值 return abs(x) % y # 不区分正负值 # 取余 result = java_mod(checksum_signed, key_size) return result @staticmethod def udf_cal_bkdr(asin): # BKDR哈希算法 hash = 0 for c in asin: hash = (hash * 33 + ord(c)) % 65535 # 对哈希值取模65535,以避免溢出 return hash @staticmethod def udf_rank_and_category(best_sellers_rank, pattern_1_rank_str, pattern_str, replace_str): best_sellers_rank = str(best_sellers_rank).replace(",", "") matches = re.findall(pattern_1_rank_str, best_sellers_rank) asin_bs_cate_1_rank = matches[0] if matches else None best_sellers_rank = best_sellers_rank.replace(replace_str, "") matches = re.findall(pattern_str, best_sellers_rank) rank_and_category = "&&&&".join([rank_cate.replace(",", "") for rank_cate in matches]) if matches else None return asin_bs_cate_1_rank, rank_and_category def df_read_data_by_kafka(self): # .option("my_kafka.bootstrap.servers", "113.100.143.162:39092") \ # .option("startingOffsets", "lastest") # 偏移量, lastest, earliest # .select(F.from_json("value", schema=self.schema).alias("data")) \ if self.date_type == "month": date_type = "_month" else: date_type = "" kafka_df = self.spark.readStream \ .format("kafka") \ .option("kafka.bootstrap.servers", "192.168.10.221:9092,192.168.10.220:9092,192.168.10.210:9092") \ .option("subscribe", f"{self.site_name}_asin_detail{date_type}") \ .load() \ .select(F.from_json(F.col("value").cast("string"), schema=self.schema).alias("data")) \ .select("data.*") # assign_option = f"""{{"{self.site_name}_asin_detail": {{"7": 0}}}}""" # # .option("subscribe", f""""{self.site_name}_asin_detail": {"7": 0}""") # kafka_df = self.spark.readStream \ # .format("my_kafka") \ # .option("my_kafka.bootstrap.servers", "192.168.10.221:9092,192.168.10.220:9092,192.168.10.210:9092") \ # .option("subscribe", f"{self.site_name}_asin_detail")\ # .option("assign", assign_option) \ # .option("startingOffsets", "lastest") \ # .load() \ # .selectExpr("CAST(value AS STRING) AS value") \ # .select(F.from_json("value", schema=self.schema).alias("data")) \ # .select("data.*") #"""{"your_topic_name": {"0": 100, "1": 200}}""" # .option("my_kafka.fetch.max.bytes", "10485760") \ # .option("my_kafka.max.partition.fetch.bytes", "10485760") \ return kafka_df def read_data(self): print("1.1 读取dim_st_asin_info表, 计算ao值") sql = f"select * from dim_st_asin_info where site_name='{self.site_name}' and date_type='{self.date_type}' and date_info='{self.date_info}'" print("sql:", sql) self.df_st_asin = self.spark.sql(sql) self.df_st_asin = self.df_st_asin.drop_duplicates(['search_term', 'asin', 'data_type']).cache() self.df_st_asin.show(10, truncate=False) print("1.2 读取ods_one_category_report表") if int(self.year) == 2022 and int(self.month) < 3: sql = f"select category_id as asin_bs_cate_1_id, rank as asin_bs_cate_1_rank, orders as asin_bsr_orders from ods_one_category_report " \ f"where site_name='{self.site_name}' and date_type='month' and date_info='2022-12';" else: sql = f"select category_id as asin_bs_cate_1_id, rank as asin_bs_cate_1_rank, orders as asin_bsr_orders from ods_one_category_report " \ f"where site_name='{self.site_name}' and date_type='month' and date_info='{self.year}-{self.month}';" print("sql:", sql) self.df_bs_report = self.spark.sql(sqlQuery=sql).cache() self.df_bs_report.show(10, truncate=False) print("1.3 读取bsr一级分类表") self.df_asin_bs = get_node_first_id_df(self.site_name, self.spark) self.df_asin_bs = self.df_asin_bs.withColumnRenamed("category_first_id", "asin_bs_cate_1_id") self.df_asin_bs.show(10, truncate=False) def handle_data(self): # 计算asin的ao值 self.df_asin_counts = self.handle_st_asin_counts() self.df_asin_counts = self.df_asin_counts.select("asin", "asin_ao").cache() def handle_asin_bs_category_rank(self, df): df = df.withColumn( 'bs_str', self.u_rank_and_category( 'best_sellers_rank', F.lit(self.pattern_1_rank_str[self.site_name]), F.lit(self.pattern_str[self.site_name]), F.lit(self.replace_str[self.site_name]) ) ) df = df.withColumn('asin_bs_cate_1_rank', df.bs_str.getField('asin_bs_cate_1_rank')) \ .withColumn('rank_and_category', df.bs_str.getField('rank_and_category')) \ .drop('bs_str', 'best_sellers_rank') df.show(10, truncate=False) return df def handle_st_asin_counts(self): self.df_st_asin = self.df_st_asin.withColumn( f"asin_data_type", F.concat(F.lit(f"asin_"), self.df_st_asin.data_type, F.lit(f"_counts")) ) df_asin_counts = self.df_st_asin.groupby([f'asin']). \ pivot(f"asin_data_type").count() df_asin_counts = self.df_asin_templates.unionByName(df_asin_counts, allowMissingColumns=True) # 防止爬虫数据没有导致程序运行出错 df_asin_counts = df_asin_counts.fillna(0) # df.show(10, truncate=False) df_asin_counts = df_asin_counts.withColumn( f"asin_sb_counts", df_asin_counts[f"asin_sb1_counts"] + df_asin_counts[f"asin_sb2_counts"] + df_asin_counts[f"asin_sb3_counts"] ) df_asin_counts = df_asin_counts.withColumn( f"asin_adv_counts", df_asin_counts[f"asin_sb_counts"] + df_asin_counts[f"asin_sp_counts"] ) df_asin_counts = df_asin_counts.withColumn( f"asin_ao", df_asin_counts[f"asin_adv_counts"] / df_asin_counts[f"asin_zr_counts"] ) # 不要把null置为0, null值产生原因是zr类型没有搜到对应的搜索词 df_asin_counts.show(10, truncate=False) return df_asin_counts @staticmethod def clean_kafka_df(df): df = df.withColumnRenamed("seller_id", "account_id") # cols_python = ["asin", "parentAsin", "variat_num", "best_sellers_rank", "best_sellers_herf", "price", "rating", # "brand", "brand", "account_id", "account_name", "account_url", "buy_box_seller_type", # "volume", "weight", "weight_str", "launchTime", "total_comments", "page_inventory"] # oneCategoryRank, aoVal, bsrOrders, bsrOrdersSale # siteName volumeFormat weightFormat asinUpdateTime # java那边插件的字段名称 cols_java = ['asin', 'parentAsin', 'asinVarNum', 'oneCategoryRank', 'bestSellersRank', 'lastHerf', 'aoVal', 'price', 'rating', 'bsrOrders', 'bsrOrdersSale', 'brandName', 'accountId', 'accountName', 'accountUrl', 'siteName', 'buyBoxSellerType', 'volume', 'volumeFormat', 'weight', 'weightFormat', 'launchTime', 'totalComments', 'pageInventory', 'asinUpdateTime'] df = df.select("asin", "parentAsin", "variat_num", "best_sellers_rank", "best_sellers_herf", "price", "rating", "brand", "account_id", "account_name", "account_url", "buy_box_seller_type", "volume", "weight", "weight_str", "launch_time", "total_comments", "page_inventory", "asinUpdateTime", "site_name", "node_id") return df def rename_cols(self, df): # 计算redis的key df = df.withColumn( 'key_outer', self.u_cal_crc32('asin', F.lit(self.key_size)) ) df = df.withColumn( 'key_inner', self.u_cal_bkdr('asin') ) df.show(5, truncate=False) df = df.withColumnRenamed("variat_num", "asinVarNum") df = df.withColumnRenamed("asin_bs_cate_1_rank", "oneCategoryRank") df = df.withColumnRenamed("rank_and_category", "bestSellersRank") # 解析后的 df = df.withColumnRenamed("best_sellers_herf", "lastHerf") df = df.withColumnRenamed("asin_ao", "aoVal") df = df.withColumnRenamed("asin_bsr_orders", "bsrOrders") df = df.withColumnRenamed("asin_bsr_orders_sale", "bsrOrdersSale") df = df.withColumnRenamed("brand", "brandName") df = df.withColumnRenamed("account_id", "accountId") df = df.withColumnRenamed("account_name", "accountName") df = df.withColumnRenamed("account_url", "accountUrl") df = df.withColumnRenamed("buy_box_seller_type", "buyBoxSellerType") df = df.withColumnRenamed("launch_time", "launchTime") df = df.withColumnRenamed("total_comments", "totalComments") df = df.withColumnRenamed("page_inventory", "pageInventory") df = df.select('asin', 'parentAsin', 'asinVarNum', 'oneCategoryRank', 'bestSellersRank', 'lastHerf', 'aoVal', 'price', 'rating', 'bsrOrders', 'bsrOrdersSale', 'brandName', 'accountId', 'accountName', 'accountUrl', 'buyBoxSellerType', 'volume', 'weight', 'launchTime', 'totalComments', 'pageInventory', 'asinUpdateTime', "site_name", "key_outer", "key_inner") return df def process_batch(self, df, epoch_id): try: self.judge_spider_asin_detail_is_finished() print("当前批次传输的数据量为df.count():", df.count()) # 确保schema非空以避免NoneType错误 if not self.schema: raise ValueError("Schema is not defined") # df.show(5, truncate=False) print("df.columns:", df.columns) # df = df.select("asin", "launch_time", "volume", "weight", "weight_str", "node_id", "variat_num", "best_sellers_rank", "best_sellers_herf", "seller_id", "account_url", "account_name", "site_name") df = self.clean_kafka_df(df=df) # df.show(5, truncate=False) # # 提取排名和分类 df_bs = self.handle_asin_bs_category_rank(df=df.select("asin", "best_sellers_rank")) # join df_save = df.join( df_bs, on='asin', how='left' ).join( self.df_asin_counts, on='asin', how='left' ).join( self.df_asin_bs, on='node_id', how='left' ) # 计算bsr效率 df_save = df_save.join( self.df_bs_report, on=['asin_bs_cate_1_rank', 'asin_bs_cate_1_id'], how='left' ) df_save = df_save.withColumn("asin_bsr_orders_sale", df_save.price * df_save.asin_bsr_orders) df_save = self.rename_cols(df=df_save) self.save_to_redis(df=df_save) except Exception as e: print(e, traceback.format_exc()) # # 与从Kafka读取的数据进行连接 # joined_df = df.join(self.df_asin_title, "asin", how='left') # # 执行你的转换和聚合逻辑 # result_df = joined_df.groupBy("asin").count() # result_df.show(10, truncate=False) print("epoch_id:", epoch_id, datetime.now().strftime("%Y-%m-%d %H:%M:%S")) def start_stream(self, processing_time=600): kafka_df = self.df_read_data_by_kafka() query = kafka_df.writeStream.foreachBatch(self.process_batch).trigger(processingTime=f'{processing_time} seconds').start() query.awaitTermination() def save_to_redis(self, df): # 将Spark DataFrame转换为Pandas DataFrame pdf = df.toPandas() # 遍历Pandas DataFrame并将数据插入到Redis for index, row in pdf.iterrows(): # 创建一个复合键,或者根据你的需要选择适当的键 # 1. 外层key为10197, 内层可以为10197:15931 # redis_key = f"{row['key_outer']}:{row['key_inner']}" # # # 插入值到Redis - 在这里我仅仅存储了一个值,你可以存储一个字典来存储多个值 # self.client.set(redis_key, row['value']) # row_json = row.to_json(orient='split') # self.client.set(redis_key, row_json) # 2. 外层key为10197, 内层可以为15931 # redis_key = row['key_outer'] # redis_field = row['key_inner'] # row_json = row.to_json(orient='split') # self.client.hset(redis_key, redis_field, row_json) # 3. hashmap + 外层key为10197, 内层可以为15931 redis_key = row['key_outer'] redis_field = row['key_inner'] row_dict = row.to_dict() # row_dict = {k: str(v).lower().replace("none", "").replace("nan", "") for k, v in row_dict.items()} # 确保所有的值都是字符串 row_dict = {k: str(v).replace("None", "").replace("none", "").replace("NaN", "").replace("nan", "") for k, v in row_dict.items()} # 确保所有的值都是字符串 row_dict = { k: format(v, ".2f") if isinstance(v, (int, float)) else str(v).replace("None", "").replace( "nan", "") for k, v in row_dict.items()} del row_dict["key_outer"] del row_dict["key_inner"] row_json = json.dumps(row_dict) self.client.hset(redis_key, redis_field, row_json) def run(self): self.read_data() self.handle_data() self.start_stream(processing_time=300) # # 将消息值转换为字符串,并创建一个临时视图 # stringifiedDF = self.my_kafka.selectExpr("CAST(value AS STRING)") # stringifiedDF.createOrReplaceTempView("KafkaData") # # 设置streaming查询,每5分钟触发一次 # query = stringifiedDF.writeStream.foreachBatch(self.process_batch).trigger(processingTime='600 seconds').start() # # 等待查询终止 # query.awaitTermination() if __name__ == '__main__': site_name = sys.argv[1] # 参数1:站点 date_type = sys.argv[2] # 参数2:类型:week/4_week/month/quarter/day date_info = sys.argv[3] # 参数3:年-周/年-月/年-季/年-月-日, 比如: 2022-1 handle_obj = DimStAsinInfo(site_name=site_name, date_type=date_type, date_info=date_info) handle_obj.run()