import os import re import sys sys.path.append(os.path.dirname(sys.path[0])) # 上级目录 from utils.templates import Templates from pyspark.sql import functions as F from pyspark.sql.types import IntegerType class DwtBulkMarket(Templates): def __init__(self, site_name='us', date_type="week", date_info='2023-44'): super().__init__() self.site_name = site_name self.date_type = date_type self.date_info = date_info self.db_save = f'dwt_bulk_market' self.spark = self.create_spark_object( app_name=f"{self.db_save}: {self.site_name}, {self.date_type}, {self.date_info}") self.reset_partitions(partitions_num=5) self.partitions_by = ['site_name', 'date_type', 'date_info'] self.df_dwd = self.spark.sql(f"select 1+1;") self.df_dim = self.spark.sql(f"select 1+1;") self.df_joined = self.spark.sql(f"select 1+1;") self.df_save = self.spark.sql(f"select 1+1;") self.u_match = self.spark.udf.register('u_match',self.udf_ele_mattch,IntegerType()) def read_data(self): sql1 = f""" select search_term, asin, is_self_asin from dwd_bulk_market where site_name = '{self.site_name}' and date_type = '{self.date_type}' and date_info = '{self.date_info}'; """ print(sql1) self.df_dwd = self.spark.sql(sqlQuery=sql1).cache() sql2 = f""" select asin, lower(asin_title) as asin_title from dim_cal_asin_history_detail where site_name = '{self.site_name}'; """ print(sql2) self.df_dim = self.spark.sql(sqlQuery=sql2).cache() def handle_data(self): self.df_joined = self.df_dwd.join(self.df_dim, 'asin', 'left') self.df_joined = self.df_joined.withColumn("bulk_match", self.u_match(F.col("asin_title"))) self.df_save = self.df_joined.groupby(['search_term'])\ .agg( F.count("asin").alias("asin_count"), F.sum(F.when(F.col("is_self_asin") == "1", 1).otherwise(0)).alias("self_asin_count"), F.round((F.sum(F.when(F.col("is_self_asin") == "1", 1).otherwise(0)) / F.count("asin")), 4).alias("proportion"), F.sum(F.when(F.col("is_self_asin") == "1", F.col("bulk_match")).otherwise(0)).alias("self_asin_title_including_bulk"), ) # 填充分区字段 self.df_save = self.df_save.withColumn("site_name", F.lit(self.site_name)) self.df_save = self.df_save.withColumn("date_type", F.lit(self.date_type)) self.df_save = self.df_save.withColumn("date_info", F.lit(self.date_info)) @staticmethod def udf_ele_mattch(match_text: str): pattern = re.compile(r'(?<!\+|\*|\-|\%|\.)\b(bulk)\b', flags=re.IGNORECASE) ele_list = re.findall(pattern, match_text) if ele_list: return 1 else: return 0 if __name__ == '__main__': site_name = sys.argv[1] date_type = sys.argv[2] date_info = sys.argv[3] handle_obj = DwtBulkMarket(site_name=site_name, date_type=date_type, date_info=date_info) handle_obj.run()