import os
import sys

sys.path.append(os.path.dirname(sys.path[0]))

from utils.common_util import CommonUtil
from utils.spark_util import SparkUtil
from pyspark.sql.functions import row_number, lit, length
from pyspark.sql.window import Window
from pyspark.sql.types import StringType, ArrayType
from urllib.parse import quote


if __name__ == '__main__':
    date_info = CommonUtil.get_sys_arg(1, None)
    n = CommonUtil.get_sys_arg(2, 0)
    import_tb = "search_term_result_year"
    export_tb = "us_merchantwords_search_term_month_syn_2024"
    spark = SparkUtil.get_spark_session("MerchantwordsSRToPG16")
    # 一次导出400w条数据
    batch_size = (int(n)-1) * 4000000
    start_index = 1 + batch_size
    end_index = 4000000 + batch_size

    # 构建 URL 的函数
    def build_urls(search_term):
        url_template = f"https://www.amazon.com/s?k={{search_term}}&page={{page_number}}"
        search_term_chinese = quote(search_term, 'utf-8')
        search_term_chinese = search_term_chinese.replace("'", '%27').replace("/", '%2F')
        urls = [
            url_template.format(
                search_term=search_term_chinese.replace(' ', '+').replace('&', '%26').replace('#', '%23').replace('(',
                                                                                                                  '%28').replace(
                    ')', '%29'), page_number=1),
            url_template.format(
                search_term=search_term_chinese.replace(' ', '+').replace('&', '%26').replace('#', '%23').replace('(',
                                                                                                                  '%28').replace(
                    ')', '%29'), page_number=2),
            url_template.format(
                search_term=search_term_chinese.replace(' ', '+').replace('&', '%26').replace('#', '%23').replace('(',
                                                                                                                  '%28').replace(
                    ')', '%29'), page_number=3)
        ]
        return urls

    # 将Python函数转换为UDF
    spark.udf.register("build_urls", build_urls, ArrayType(StringType()))

    # 从SR数据库中读取已有数据
    df = spark.read.format("jdbc") \
        .option("url", "jdbc:mysql://192.168.10.151:19030/test") \
        .option("dbtable", import_tb) \
        .option("user", "chenyuanjie") \
        .option("password", "chenyuanjie12345") \
        .load()

    df = df.withColumn(
        "row_num",
        row_number().over(Window.orderBy("search_term"))
    ).filter(f"row_num BETWEEN {start_index} AND {end_index}").repartition(20).cache()

    # 过滤掉keyword含有中文的数据
    df = df.filter(~df["search_term"].rlike("[\u4e00-\u9fff]"))

    # 如果没有数据需要导出,退出循环
    if df.count() == 0:
        print("-------数据已全部导出!-------")
        quit()

    df = df.selectExpr("search_term", "explode(build_urls(search_term)) AS url")
    df = df.filter(length(df['url']) <= 450)
    df = df.withColumn("date_info", lit(date_info))

    # 导出数据到 PostgreSQL 数据库
    df.write.format("jdbc") \
        .option("url", "jdbc:postgresql://192.168.10.225:5432/selection") \
        .option("dbtable", export_tb) \
        .option("user", "yswg_postgres") \
        .option("password", "yswg_postgres") \
        .mode("append") \
        .save()

    spark.stop()