import os import sys import pandas as pd from pyspark.sql.window import Window sys.path.append(os.path.dirname(sys.path[0])) # 上级目录 from pyspark.storagelevel import StorageLevel from utils.templates import Templates # from ..utils.templates import Templates from pyspark.sql import functions as F from pyspark.sql.types import StructType,StructField, StringType, IntegerType class DwdStMeasure(Templates): def __init__(self, site_name='us', date_type="month", date_info='2022-01'): super().__init__() self.site_name = site_name self.date_type = date_type self.date_info = date_info self.db_save = f'dwd_st_rank' self.spark = self.create_spark_object( app_name=f"{self.db_save}: {self.site_name}, {self.date_type}, {self.date_info}") # self.df_date = self.get_year_week_tuple() # pandas的df对象 self.df_st_month = self.spark.sql(f"select 1+1;") self.df_st_week = self.spark.sql(f"select 1+1;") def read_data(self): pdf = pd.read_csv(f"/root/bs_category_rank.csv") schema = StructType([ StructField("category_name", StringType(), True), StructField("bsr_rank", StringType(), True), StructField("category_first_id", StringType(), True), ]) self.df_bsr_rank = self.spark.createDataFrame(pdf, schema=schema).cache() self.df_bsr_rank.show(20, truncate=False) # sql = f"select asin, asin_title, asin_category_desc as asin_category, asin_launch_time, created_time from dim_asin_detail WHERE site_name ='us' and date_type ='month' and date_info ='2023-11' and LOWER(asin_title) like '%halloween%';" print("sql:", sql) self.df_asin_detail = self.spark.sql(sql).cache() self.df_asin_detail.show(20, truncate=False) print("df_asin_detail:", self.df_asin_detail.count()) sql = f"SELECT asin, asin_bs_cate_1_id as category_first_id, asin_bs_cate_1_rank as asin_bsr_rank from dim_asin_bs_info WHERE site_name ='us' and date_type ='month' and date_info ='2023-11';" print("sql:", sql) self.df_asin_bsr = self.spark.sql(sql).cache() self.df_asin_bsr.show(20, truncate=False) print("df_asin_detail:", self.df_asin_detail.count()) # # sql = f"select asin, asin_title, category_first_id, asin_launch_time, asin_rank, asin_category_desc as asin_category from dwt_flow_asin WHERE site_name ='us' and date_type ='month' and date_info ='2023-11' and LOWER(asin_title) like '%halloween%'" # self.df_flow_asin = self.spark.sql(sql).cache() # self.df_flow_asin.show(20, truncate=False) # print("df_flow_asin:", self.df_flow_asin.count()) def handle_data(self): self.df_asin_bsr = self.df_asin_bsr.join( self.df_bsr_rank, on='category_first_id', how='inner' ) self.df_save = self.df_asin_detail.join( self.df_asin_bsr, on='asin', how='inner' ) # self.df_save = self.df_flow_asin.join( # self.df_bsr_rank, on='category_first_id', how='inner' # ) self.df_save = self.df_save.withColumn("rank_flag", F.when(self.df_save["asin_bsr_rank"] <= self.df_save["bsr_rank"], 1).otherwise(0)) print("df_save:", self.df_save.count()) print("df_save--1:", self.df_save.filter('rank_flag=1').count()) self.df_save = self.df_save.filter('rank_flag=1') # # 合并两个DataFrame # df_combined = self.df_st_month.union(self.df_st_week) # # # 只选择 row_number 为 1 的行 # df_unique = df_combined.drop_duplicates(['asin_brand_name']) # # self.df_combined_unique = df_unique # self.df_combined_unique.show(20, truncate=False) # self.df_combined_unique = self.df_st_month.join(self.df_st_week, on='asin', how='inner') # # # , 'search_term' # window = Window.partitionBy(['asin']).orderBy( # self.df_combined_unique.st_asin_zr_page_row.asc(), # ) # self.df_combined_unique = self.df_combined_unique. \ # withColumn("page_rank_top", F.row_number().over(window=window)) # # print("self.df_st_asin_info, 开窗去重前:", self.df_st_asin_info.count()) # self.df_combined_unique = self.df_combined_unique.filter("page_rank_top<=3") # print("combined:", self.df_combined_unique.count()) def save_data(self): # 转换为 Pandas DataFrame pdf = self.df_save.toPandas() # 根据需求将每100万行数据保存为一个CSV文件 num_rows_per_file = 1000000 num_files = (len(pdf) // num_rows_per_file) + (1 if len(pdf) % num_rows_per_file != 0 else 0) for i in range(num_files): start_idx = i * num_rows_per_file end_idx = start_idx + num_rows_per_file output_path = os.path.join("/root", f"asin_bsr_rank_{i + 1}.csv") # 将子集保存为CSV pdf.iloc[start_idx:end_idx].to_csv(output_path, index=False) print(f"Data saved into {num_files} CSV files.") if __name__ == '__main__': handle_obj = DwdStMeasure() handle_obj.run()