import ast import os import shutil import sys import pandas as pd os.environ["PYARROW_IGNORE_TIMEZONE"] = "1" sys.path.append(os.path.dirname(sys.path[0])) # 上级目录 from utils.templates import Templates # from ..utils.templates import Templates # 分组排序的udf窗口函数 from pyspark.sql.window import Window from pyspark.sql import functions as F from pyspark.sql.types import ArrayType, FloatType from py4j.java_gateway import java_import import pandas as pd import pyarrow as pa import pyarrow.parquet as pq class DwdAsinFeaturesParquet(Templates): def __init__(self, site_name='us', block_size=100000): super(DwdAsinFeaturesParquet, self).__init__() self.site_name = site_name self.db_save = f'dwd_asin_features_parquet' self.spark = self.create_spark_object(app_name=f"{self.db_save}: {self.site_name}") self.df_save = self.spark.sql(f"select 1+1;") self.partitions_by = ['site_name', 'block'] self.partitions_num = 1 self.hdfs_file_path = f'hdfs://hadoop5:8020/home/big_data_selection/dim/dim_asin_features_parquet/site_name={self.site_name}/' self.hdfs_file_list = self.get_hdfs_file_list() self.index_count = 0 def get_hdfs_file_list(self): # 导入hadoop的包 java_import(self.spark._jvm, 'org.apache.hadoop.fs.Path') # fs = self.spark._jvm.org.apache.hadoop.fs.FileSystem.get(self.spark._jsc.hadoopConfiguration(self.hdfs_file_path)) # status = fs.listStatus(self.spark._jvm.org.apache.hadoop.fs.Path()) fs = self.spark._jvm.org.apache.hadoop.fs.FileSystem.get(self.spark._jsc.hadoopConfiguration()) path = self.spark._jvm.org.apache.hadoop.fs.Path(self.hdfs_file_path) status = fs.listStatus(path) hdfs_file_list = [file_status.getPath().getName() for file_status in status] return hdfs_file_list def read_data(self, hive_path): df = self.spark.read.text(hive_path) return df def handle_data(self, df, index): # 创建一个新的 DataFrame,其中每个字段都是一个独立的列 split_df = df.select(F.split(df['value'], '\t').alias('split_values')) # 假设你知道你的数据有三个字段 # 你可以这样创建每个字段的独立列 final_df = split_df.select( split_df['split_values'].getItem(0).alias('id'), split_df['split_values'].getItem(1).alias('asin'), split_df['split_values'].getItem(2).alias('embedding') ) print("分块前分区数量:", final_df.rdd.getNumPartitions()) # 642 # 显示处理后的 DataFrame 的内容 # final_df.show() # 从hdfs读取parquet文件,进行split切分的时候是字符串类型-->转换成数值类型 final_df = final_df.withColumn('id', final_df['id'].cast('bigint')) # 然后你可以安全地转换 # 添加索引列 final_df = final_df.withColumn("index", F.monotonically_increasing_id() + self.index_count) final_df.show() # 定义一个将字符串转换为列表的UDF str_to_list_udf = F.udf(lambda s: ast.literal_eval(s), ArrayType(FloatType())) # 对DataFrame中的列应用这个UDF final_df = final_df.withColumn("embedding", str_to_list_udf(final_df["embedding"])) # final_df.write.mode('overwrite').parquet("hdfs://hadoop5:8020/home/ffman/parquet") final_df = final_df.withColumn("block", F.lit(index)) final_df = final_df.withColumn("site_name", F.lit(self.site_name)) index_count = final_df.count() return final_df, index_count @staticmethod def save_data_to_local(df, local_path): # df.write.mode('append').parquet(whole_path) # df.write.mode('overwrite').parquet(local_path) print("当前存储到本地:", local_path) # Convert DataFrame to Arrow Table df = df.toPandas() table = pa.Table.from_pandas(df) # Save to Parquet pq.write_table(table, local_path) def save_data_to_hive(self): self.save_data() def save_data_all(self, df, local_path): self.save_data_to_hive() self.save_data_to_local(df.select("embedding"), local_path) def run(self): embeddings_dir = rf"/mnt/ffman/embeddings/folder" # if os.path.exists(embeddings_dir): # shutil.rmtree(embeddings_dir) os.mkdir(embeddings_dir) for hdfs_file in self.hdfs_file_list: index = self.hdfs_file_list.index(hdfs_file) hive_path = self.hdfs_file_path + hdfs_file print("hive_path:", hive_path) df = self.read_data(hive_path=hive_path) self.df_save, index_count = self.handle_data(df=df, index=index) # local_path = rf"hdfs://hadoop5:8020/home/ffman/embeddings/folder_test/part_{index}" local_path = rf"{embeddings_dir}/part_{index}.parquet" self.index_count += index_count print("index_count, self.index_count", index_count, self.index_count) self.save_data_to_hive() self.save_data_to_local(df=self.df_save.select("embedding"), local_path=local_path) if __name__ == '__main__': handle_obj = DwdAsinFeaturesParquet() handle_obj.run()