import os import sys import re from functools import reduce sys.path.append(os.path.dirname(sys.path[0])) # 上级目录 from utils.hdfs_utils import HdfsUtils from pyspark.sql import functions as F from pyspark.sql.types import StringType, IntegerType, DoubleType, MapType from utils.spark_util import SparkUtil from utils.common_util import CommonUtil, DateTypes class DwsStBrandInfo(object): def __init__(self, site_name, date_type, date_info): self.site_name = site_name self.date_type = date_type self.date_info = date_info app_name = f"{self.__class__.__name__}:{site_name}:{date_type}:{date_info}" self.spark = SparkUtil.get_spark_session(app_name) self.hive_table = f"dws_st_brand_info" self.hdfs_path = f"/home/{SparkUtil.DEF_USE_DB}/dws/{self.hive_table}/site_name={self.site_name}/date_type={self.date_type}/date_info={self.date_info}" self.partitions_num = CommonUtil.reset_partitions(site_name, 10) self.year_month = self.get_year_month() self.last_year_month = CommonUtil.get_month_offset(self.year_month, -1) # # 解析品牌词 # def st_brand_label(self,brand_list): # def udf_st_brand_label(search_term): # match_brand = None # label_type = 0 # for brand in brand_list: # pattern = re.compile(r'\b(?:{})\b'.format(re.escape(str(brand))), flags=re.IGNORECASE) # if bool(pattern.search(search_term)): # match_brand = str(brand) # label_type = 1 # break # return {"match_brand": match_brand, "label_type": label_type} # return F.udf(udf_st_brand_label, MapType(StringType(), StringType(), True)) # 解析品牌词 def st_brand_label(self, brand_list): pattern = re.compile(r'\b(?:{})\b'.format('|'.join([re.escape(x) for x in brand_list])), flags=re.IGNORECASE) def udf_st_brand_label(search_term): match_brand = None label_type = 0 if len(brand_list) > 0: result = pattern.search(search_term) if bool(result): match_brand = str(result.group()) label_type = 1 return {"match_brand": match_brand, "label_type": label_type} return F.udf(udf_st_brand_label, MapType(StringType(), StringType(), True)) def get_year_month(self): # 根据日期获取当前周 if self.date_type == DateTypes.week.name: sql = f"select year_month from dim_date_20_to_30 where year_week='{self.date_info}'" df = self.spark.sql(sqlQuery=sql).toPandas() print(list(df.year_month)[0]) return list(df.year_month)[0] elif self.date_type == DateTypes.month.name or date_type == DateTypes.month_week.name: return self.date_info def run(self): sql = f""" select search_term from dim_st_detail where site_name = '{self.site_name}' and date_type = '{self.date_type}' and date_info = '{self.date_info}' """ df_st_detail = self.spark.sql(sqlQuery=sql) print("sql:", sql) # 重分区增加并行度 df_st_detail = df_st_detail.repartition(80, 'search_term') if self.date_type == DateTypes.week.name: # 获取品牌词库 sql = f""" select st_brand_name_lower as brand_name from dim_st_brand_info where site_name = '{self.site_name}' and date_type = 'month' and date_info in ('{self.last_year_month}','{self.year_month}') and length(st_brand_name_lower) > 1 and black_flag = 0 """ elif self.date_type == DateTypes.month.name or date_type == DateTypes.month_week.name: sql = f""" select st_brand_name_lower as brand_name from dim_st_brand_info where site_name = '{self.site_name}' and date_type = '{self.date_type}' and date_info = '{self.date_info}' and length(st_brand_name_lower) > 1 and black_flag = 0 """ df_st_brand = self.spark.sql(sqlQuery=sql) df_st_brand = df_st_brand.dropDuplicates(['brand_name']) print("sql:", sql) # 将数据转换成pandas_df pd_df = df_st_brand.toPandas() # 提取品牌词库list brand_list = pd_df["brand_name"].values.tolist() df_st_map = self.st_brand_label(brand_list)(df_st_detail.search_term) df_st_detail = df_st_detail.withColumn("first_match_brand", df_st_map["match_brand"]) df_st_detail = df_st_detail.withColumn("st_brand_label", df_st_map["label_type"]) # 补全分区字段 df_save = df_st_detail.select( F.col('search_term'), F.col('first_match_brand'), F.col('st_brand_label').cast('int').alias('st_brand_label'), F.date_format(F.current_timestamp(), 'yyyy-MM-dd HH:mm:SS').alias('created_time'), F.date_format(F.current_timestamp(), 'yyyy-MM-dd HH:mm:SS').alias('updated_time'), F.lit(self.site_name).alias("site_name"), F.lit(self.date_type).alias("date_type"), F.lit(self.date_info).alias("date_info") ) df_save = df_save.repartition(self.partitions_num) partition_by = ["site_name", "date_type", "date_info"] print(f"清除hdfs目录中.....{self.hdfs_path}") HdfsUtils.delete_file_in_folder(self.hdfs_path) print(f"当前存储的表名为:{self.hive_table},分区为{partition_by}") df_save.write.saveAsTable(name=self.hive_table, format='hive', mode='append', partitionBy=partition_by) print("success") if __name__ == '__main__': site_name = CommonUtil.get_sys_arg(1, None) date_type = CommonUtil.get_sys_arg(2, None) date_info = CommonUtil.get_sys_arg(3, None) obj = DwsStBrandInfo(site_name, date_type, date_info) obj.run()