""" author: 方星钧(ffman) description: 清洗6大站点对应的 “ods_brand_analytics” 的表: 排名权重计算,用天补全周/30天/月,存储新增的关键词 table_read_name: ods_brand_analytics table_save_name: ods_brand_analytics table_save_level: ods version: 1.0 created_date: 2022-11-21 updated_date: 2022-11-21 """ import os import sys sys.path.append(os.path.dirname(sys.path[0])) # 上级目录 from pyspark.storagelevel import StorageLevel from utils.templates import Templates # from ..utils.templates import Templates # from AmazonSpider.pyspark_job.utils.templates_test import Templates from pyspark.sql.types import StringType # 分组排序的udf窗口函数 from pyspark.sql.window import Window from pyspark.sql import functions as F class OdsBrandAnalytics(Templates): def __init__(self, site_name='us', date_type="month", date_info='2022-01'): super().__init__() self.site_name = site_name self.date_type = date_type self.date_info = date_info self.date_info2 = date_info self.db_save = f'ods_brand_analytics' self.spark = self.create_spark_object(app_name=f"{self.db_save}: {self.site_name}, {self.date_type}, {self.date_info}") # self.df_date = self.get_year_week_tuple() # pandas的df对象 self.df_st = self.spark.sql(f"select 1+1;") self.df_st_current = self.spark.sql(f"select 1+1;") self.df_st_rank = self.spark.sql(f"select 1+1;") self.df_save = self.spark.sql(f"select 1+1;") self.partitions_num = 1 self.reset_partitions(partitions_num=self.partitions_num) self.partitions_by = ['site_name', 'date_type', 'date_info'] self.get_year_week_tuple() if self.date_type in ['4_week', "last30day"]: print(f"date_type={self.date_type}, 无需导入数据") else: self.handle_st_import() # if self.date_type == '4_week': # self.date_info = '2022-12-17' self.get_date_info_tuple() def read_data(self): if (self.date_type == 'week' and date_info >= '2023-21') or self.date_type == 'month_week': # 周的搜索词排名从2023-21周开始出现大量重复, 需要动态判断, 决定是否根据id大小给出新的排名 pass else: if self.date_type == '4_week': # if self.site_name in ['us']: # params1 = f"date_type='day' and date_info in {self.date_info_tuple}" # else: # params1 = f"date_type='week' and date_info in {self.year_week_tuple}" params1 = f"date_type='week' and date_info in {self.year_week_tuple} and rank <= 1500000" params2 = f" limit 0" elif self.date_type == 'week_old': # 旧版周表导入之后直接退出 quit() elif self.date_type in ['month_old']: params1 = f"date_type='week_old' and date_info in {self.year_week_tuple} and rank <= 1500000" params2 = f"" elif self.date_type in ['month']: params1 = f"date_type='week' and date_info in {self.year_week_tuple} and rank <= 1500000" params2 = f"" else: params1 = f"date_type='day' and date_info in {self.date_info_tuple}" params2 = f"" if self.date_type == "last30day": params2 = f" limit 0" print("1.1 读取ods_brand_analytics表") # sql = f"select * from ods_brand_analytics where site_name='{self.site_name}' " \ # f"and date_type='day' and date_info in {self.date_info_tuple};" sql = f"select * from ods_brand_analytics where site_name='{self.site_name}' " \ f"and {params1};" print("sql:", sql) self.df_st = self.spark.sql(sql).cache() self.df_st.show(10, truncate=False) # if self.df_st.count() == 0: # quit() # 此处停止会中断程序 # print("self.df_st:", self.df_st.drop_duplicates(['search_term']).count()) print("1.2 读取ods_brand_analytics表") sql = f"select * from ods_brand_analytics where site_name='{self.site_name}' " \ f"and date_type='{self.date_type}' and date_info = '{self.date_info}' {params2};" print("sql:", sql) self.df_st_current = self.spark.sql(sql).cache() self.df_st_current.show(10, truncate=False) def handle_us_week_rank(self, year_week='2023-46'): if self.date_type == 'month_week': sql = f"select * from ods_brand_analytics where site_name='{self.site_name}' and date_type='week' and date_info = '{year_week}';" else: sql = f"select * from ods_brand_analytics where site_name='{self.site_name}' and date_type='{self.date_type}' and date_info = '{self.date_info}';" print("sql:", sql) self.df_st = self.spark.sql(sql).cache() # 将读取的数据写入临时表 self.df_st.createOrReplaceTempView("temp_table") self.df_st.unpersist() # 停止对表的读取操作, 从而可以进行覆盖写入 self.df_save = self.spark.sql("select * from temp_table").cache() self.df_save.show(10, truncate=False) st_count = self.df_save.count() # st_max = self.df_save.rank.max( # st_max = self.df_save.agg({"rank": "max"}).collect()[0][0] # rate = st_max / st_count if self.date_type != 'month_week': st_max = self.df_save.agg({"rank": "max"}).collect()[0][0] rate = st_max / st_count if rate >= 0.95: print("st_count, st_max, rate:", st_count, st_max, rate) quit() # elif st_count == 0: # quit() else: if self.date_type == 'month_week': # for year_week in self.year_week_tuple: hdf_cmd = f"hdfs dfs -rm -f /home/big_data_selection/ods/ods_brand_analytics/site_name={self.site_name}/date_type=week/date_info={year_week}/*" # pass # 无需删除 else: hdf_cmd = f"hdfs dfs -rm -f /home/big_data_selection/ods/ods_brand_analytics/site_name={self.site_name}/date_type={self.date_type}/date_info={self.date_info}/*" print("hdf_cmd:", hdf_cmd) os.system(hdf_cmd) window = Window.orderBy( self.df_save.id.asc() ) self.df_save = self.df_save.withColumn("rank", F.row_number().over(window=window)) # self.df_save.write.saveAsTable(name=self.db_save, format='hive', mode='overwrite', partitionBy=self.partitions_by) # quit() if self.date_type == 'month_week': self.df_save = self.df_save.withColumn("date_type", F.lit('week')) self.df_save = self.df_save.withColumn("date_info", F.lit(year_week)) self.df_save.show(10, truncate=False) self.save_data() def handle_data(self): if self.date_type in ['week', 'month_week']: if self.date_type == 'month_week': for year_week in self.year_week_tuple: self.handle_us_week_rank(year_week=year_week) # pass # 计算month_week sql = f"select * from ods_brand_analytics where site_name='{self.site_name}' and date_type='week' and date_info in {self.year_week_tuple} and rank <= 1500000;" print("sql:", sql) self.df_st = self.spark.sql(sql).cache() self.df_st.show(10, truncate=False) # 将读取的数据写入临时表 self.df_st.createOrReplaceTempView("temp_table") self.df_st.unpersist() # 停止对表的读取操作, 从而可以进行覆盖写入 self.df_save = self.spark.sql("select * from temp_table").cache() sql = f"select * from ods_brand_analytics where site_name='{self.site_name}' " \ f"and date_type='{self.date_type}' and date_info = '{self.date_info}';" print("sql:", sql) self.df_st_current = self.spark.sql(sql).cache() self.df_st_current.show(10, truncate=False) self.handle_st_rank() self.handle_st_duplicated() self.df_save = self.df_save.withColumn("date_type", F.lit(self.date_type)) self.df_save = self.df_save.withColumn("date_info", F.lit(self.date_info2)) self.df_save.show(10, truncate=False) # # df 是您的DataFrame # nan_count_df = self.df_save.select([F.count(F.when(F.isnan(c) | F.col(c).isNull(), c)).alias(c) for c in self.df_save.columns]) # nan_count_df.show() self.save_data() quit() else: self.handle_us_week_rank() # elif self.site_name == 'us' and self.date_type == 'month' and self.date_info >= '2023-09': # quit() else: self.handle_st_rank() self.handle_st_duplicated() self.df_save = self.df_save.withColumn("date_type", F.lit(self.date_type)) self.df_save = self.df_save.withColumn("date_info", F.lit(self.date_info2)) self.df_save.show(10, truncate=False) def handle_st_import(self): print(f"导入关键词数据: {self.site_name}, {self.date_type}, {self.date_info}") if self.date_type in ['month_week', 'month']: # if self.date_type == 'month': os.system(f"/mnt/run_shell/sqoop_shell/import/ods_brand_analytics.sh {self.site_name} {self.date_type} {self.date_info}") for year_week in self.year_week_tuple: os.system(f"/mnt/run_shell/sqoop_shell/import/ods_brand_analytics.sh {self.site_name} week {year_week}") else: os.system(f"/mnt/run_shell/sqoop_shell/import/ods_brand_analytics.sh {self.site_name} {self.date_type} {self.date_info}") def handle_st_rank_old(self): self.df_st_rank = self.df_st.select("search_term", "rank", "date_info") self.df_st_current = self.df_st_current.withColumn("flag", F.lit(1)) self.df_st_rank = self.df_st_rank.join( self.df_st_current.select("search_term", "flag"), on='search_term', how='left' ) self.df_st_rank = self.df_st_rank.filter("flag is null") self.df_st_rank.show(10, truncate=False) def handle_st_rank(self): self.df_st_rank = self.df_st.select("search_term", "rank", "date_info") self.df_st_current = self.df_st_current.withColumn("flag", F.lit(1)) # self.df_st_rank.show(10, truncate=False) self.df_st_rank = self.df_st_rank.join( self.df_st_current.select("search_term", "flag"), on='search_term', how='left' ) self.df_st_rank = self.df_st_rank.filter("flag is null") self.df_st_rank.show(10, truncate=False) # count = self.df_st_current.count() # 计算当前周/月关键词的数量 df_count = self.df_st.groupby(['date_info']).count() # df_count.show(10, truncate=False) df_count = df_count.toPandas() date_dict = {date_info: count for date_info, count in zip(df_count.date_info, df_count['count'])} print("date_dict:", date_dict) self.df_st_rank = self.df_st_rank.groupby(['search_term']). \ pivot("date_info").agg(F.mean("rank")) self.df_st_rank.show(10, truncate=False) self.df_st_rank = self.df_st_rank.fillna(date_dict) self.df_st_rank = self.df_st_rank.withColumn("rank_sum", F.lit(0)) for col in date_dict.keys(): print("col:", col) self.df_st_rank = self.df_st_rank.withColumn( "rank_sum", self.df_st_rank.rank_sum + self.df_st_rank[col] ) self.df_st_rank = self.df_st_rank.withColumn( "rank_sum_avg", self.df_st_rank.rank_sum / len(self.date_info_tuple) ) print("1111==============") self.df_st_rank.show(10, truncate=False) window = Window.orderBy( self.df_st_rank.rank_sum_avg.asc() ) self.df_st_rank = self.df_st_rank.withColumn("rank_avg", F.row_number().over(window=window)) self.df_st_rank = self.df_st_rank.drop("rank_sum", "rank_sum_avg") print("2222==============") self.df_st_rank.show(10, truncate=False) # 这里都没有问题 for col in date_dict.keys(): self.df_st_rank = self.df_st_rank.drop(col) # self.df_st_rank.show(10, truncate=False) self.df_st_rank = self.df_st_rank.withColumnRenamed("rank_avg", "rank") # self.df_st_rank = self.df_st_rank.withColumn("rank", self.df_st_rank.rank+F.lit(self.df_st_current.rank.count())) df_max_rank = self.df_st_current.agg(F.max('rank').alias("max_rank")) df_max_rank.show(10, truncate=False) df_max_rank = df_max_rank.toPandas() max_rank = list(df_max_rank.max_rank)[0] if self.date_type not in ['4_week', 'last30day'] else 0 max_rank = max_rank if self.df_st_current.count() != 0 else 0 if self.date_type == 'last30day': self.df_st_rank = self.df_st_rank.fillna({'rank': 0}) self.df_st_rank = self.df_st_rank.withColumn("rank", self.df_st_rank.rank+F.lit(max_rank)) # print("self.df_st_rank:", self.df_st_rank.count()) self.df_st_rank.show(10, truncate=False) def handle_st_duplicated(self): # 默认取最新一天的关键词数据 window = Window.partitionBy(['search_term']).orderBy( self.df_st.date_info.desc() ) self.df_st = self.df_st.withColumn("rank_top", F.row_number().over(window)) self.df_st = self.df_st.filter("rank_top=1") self.df_st = self.df_st.drop("rank_top", "rank") self.df_save = self.df_st_rank.join( self.df_st, on='search_term', how='left' ) # print("self.df_save:", self.df_save.count()) # self.df_save.show(10, truncate=False) if __name__ == '__main__': site_name = sys.argv[1] # 参数1:站点 date_type = sys.argv[2] # 参数2:类型:day/week/4_week/month/quarter date_info = sys.argv[3] # 参数3:年-月-日/年-周/年-月/年-季, 比如: 2022-1 handle_obj = OdsBrandAnalytics(site_name=site_name, date_type=date_type, date_info=date_info) handle_obj.run()