dwt_merchantwords_st_detail.py 9.61 KB
Newer Older
chenyuanjie committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
import os
import sys

sys.path.append(os.path.dirname(sys.path[0]))
from utils.common_util import CommonUtil

from utils.spark_util import SparkUtil
from pyspark.sql import functions as F, Window, DataFrame
from pyspark.sql.types import IntegerType, StringType, MapType

"""
merchantwords 搜索词数据集成并去重输出
"""


class DwtMerchantwordsStDetail(object):

    def __init__(self, site_name, batch):
        assert site_name is not None, "site_name not null"
        assert batch is not None, "batch not null"

        self.site_name = site_name
        self.batch = batch
        app_name = f"{self.__class__.__name__}:{self.site_name}::{self.batch}"
        self.spark = SparkUtil.get_spark_session(app_name)
        self.hive_tb = 'dwt_merchantwords_st_detail'
        self.udf_check_utf8_and_convert_reg = F.udf(self.check_utf8_and_convert, StringType())
        pass

    @staticmethod
    def check_utf8_and_convert(word: str):
        """
        判断一个英文字符是否是utf-8编码的 即不包含乱码字符及中文 ,如果包含的话则从gbk编码转为utf-8编码
        :param str:
        :return:
        """
        import re
        # 检查是否包含有中文 如果有中文的话大概率是乱码 从gbk转为utf-8
        pattern = re.compile(r'[\u4e00-\u9fa5]')
        if pattern.match(word) is not None:
            try:
                return word.encode("gbk").decode("utf-8")
            except:
                return word
        else:
            return word

    @staticmethod
    def udf_detect_phrase_reg(lang_word_map):
        def detect_phrase(phrase: str):
            import re
            # + 号替换为空格用于分词
            phrase = re.sub(r'(\+)', ' ', phrase).strip()
            # 分词
            from nltk.tokenize import word_tokenize
            wordList = list(filter(lambda x: len(x) >= 2, word_tokenize(phrase, "english")))
            tmp_map = {
                "en": {"frequency": 0, "word": []},
                "fr": {"frequency": 0, "word": []},
                "es": {"frequency": 0, "word": []},
                "de": {"frequency": 0, "word": []},
            }
            for word in wordList:
                lang_rank_map: dict = lang_word_map.get(word)
                if lang_rank_map is not None:
                    for lang in lang_rank_map.keys():
                        frequency = lang_rank_map[lang]
                        tmp_map[lang]["frequency"] = tmp_map[lang]["frequency"] + frequency
                        tmp_map[lang]["word"].append(word)
                pass

            #  先根据word名称个数倒序后根据分数
            lang, hint_word_map = sorted(tmp_map.items(), key=lambda it: (len(it[1]['word']), it[1]['frequency']), reverse=True)[0]

            if hint_word_map['frequency'] == 0:
                return {"lang": None, "hint_word": None}
            else:
                hint_word_list = hint_word_map['word']
                hint_word = " ".join(hint_word_list)
                if len(hint_word) <= 2:
                    return {"lang": None, "hint_word": None}
                return {"lang": lang, "hint_word": hint_word}
            pass

        return F.udf(detect_phrase, MapType(StringType(), StringType()))

    def handle_calc_lang(self, df_all: DataFrame) -> DataFrame:
        lang_word_list = self.spark.sql("""
        select word, langs
        from big_data_selection.tmp_lang_word_frequency
    """).collect()
        # lang_word_df => 转为map
        lang_word_map = {row['word']: row['langs'] for row in lang_word_list}

        df_lang_all = df_all.withColumn("lang",
                                        F.coalesce(self.udf_detect_phrase_reg(lang_word_map)(F.col("keyword")).getField("lang"),
                                                   F.lit("other")))
        return df_lang_all

    def handle_update(self, date_info):
        df_append = self.spark.sql(f"""
                select keyword,
                       volume,
                       avg_3m,
                       avg_12m,
                       depth,
                       results_count,
                       sponsored_ads_count,
                       page_1_reviews,
                       appearance,
                       last_seen,
                       update_time,
                       'csv' as source_type,
                        null as api_json,
                       'us' as site_name
                from ods_merchantwords_st_detail_append
                where date_info = '{date_info}'
""").cache()
        # 判断是否需要更新
        assert df_append.count() > 0, "无需更新,请检查【ods_merchantwords_st_detail_append】数据是否异常"

        df_exist = self.spark.sql(f"""
            select keyword,
                   volume,
                   avg_3m,
                   avg_12m,
                   depth,
                   results_count,
                   sponsored_ads_count,
                   page_1_reviews,
                   appearance,
                   last_seen,
                   update_time,
                   source_type,
                   api_json,
                   site_name
            from dwt_merchantwords_st_detail;
""").cache()

        df_all = df_exist.unionByName(df_append)
        self.handle_save(df_all)

        pass

    def handle_save(self, df_all: DataFrame):
        # 处理乱码
        df_all = df_all.withColumn("keyword", F.trim(self.udf_check_utf8_and_convert_reg(F.col("keyword"))))
        #  keyword 开窗 时间倒序 取最新一个
        df_all = df_all.withColumn("row_number", F.row_number().over(window=Window.partitionBy(['keyword']).orderBy(
            F.col("update_time").desc()
        )))
        # 去重
        df_all = df_all.where("row_number == 1 ")
        df_all = df_all.drop(F.col("row_number")).cache()
        # 语种识别
        df_all = self.handle_calc_lang(df_all)
        # 分区重置
        df_all = df_all.repartition(60)

        # #  去重
        partition_dict = {
            "site_name": self.site_name,
            "batch": self.batch,
        }
        # 保存或更新
        CommonUtil.save_or_update_table(
            spark_session=self.spark,
            hive_tb_name=self.hive_tb,
            partition_dict=partition_dict,
            df_save=df_all,
            drop_exist_tmp_flag=False
        )
        print("success")
        pass

    def run(self):
        tb_ods = "tmp_merchantwords_st_detail_2024"
        if self.site_name != 'us':
            tb_ods = f"{site_name}_{tb_ods}"
            pass

        df_all = self.spark.sql(f"""
        select  
            keyword,
            volume,
            avg_3m,
            avg_12m,
            depth,
            results_count,
            sponsored_ads_count,
            page_1_reviews,
            appearance,
            last_seen,
            update_time,
            source_type,
            api_json,
            site_name
        from {tb_ods}
""")
        #  schema
        schema_api = F.schema_of_json("""
            {"historyArray": [1,2],
        "country": 1,
        "avg12Month": 1015775,
        "last_seen": 20230801,
        "totalReviewsFirstPage": 62592,
        "avg3Month": 1249957,
        "volume": 134090,
        "categoryIdArray": [
            "toys-and-games"
        ],
        "depth": 3,
        "appearance": "Evergreen",
        "popularity": 5,
        "resultsCount": 1000,
        "sponsoredCount": -1,
        "keyword": "electric scooter",
        "inLatestBatch": true
    }""")
        #         schema_csv = F.schema_of_json("""
        # {"volume":"9","depth":"8","appearance":"Rediscovered","phrase":"weaning rings for goats","sponsored ads":"0","page 1 reviews":"1914","3m avg":"3","12m avg":"1","results":"1"}
        #             """)

        df_all = df_all.withColumn("json_api", F.from_json(F.col("api_json"), schema_api))

        df_all = df_all.select(
            F.col("keyword").alias("keyword"),
            #  解析和兼容
            F.coalesce(F.col("json_api.volume"), F.col("volume")).cast(IntegerType()).alias("volume"),
            F.coalesce(F.col("json_api.avg3Month"), F.col("avg_3m")).cast(IntegerType()).alias("avg_3m"),
            F.coalesce(F.col("json_api.avg12Month"), F.col("avg_12m")).cast(IntegerType()).alias("avg_12m"),
            F.coalesce(F.col("json_api.depth"), F.col("depth")).cast(IntegerType()).alias("depth"),
            F.coalesce(F.col("json_api.resultsCount"), F.col("results_count")).cast(IntegerType()).alias("results_count"),
            F.coalesce(F.col("json_api.sponsoredCount"), F.col("sponsored_ads_count")).cast(IntegerType()).alias(
                "sponsored_ads_count"),
            F.coalesce(F.col("json_api.totalReviewsFirstPage"), F.col("page_1_reviews")).cast(IntegerType()).alias("page_1_reviews"),
            F.coalesce(F.col("json_api.appearance"), F.col("appearance")).alias("appearance"),
            F.coalesce(F.col("json_api.last_seen")).alias("last_seen"),

            F.col("update_time").alias("update_time"),
            F.col("source_type"),
            F.col("api_json"),
            F.lit(self.site_name).alias("site_name"),
            F.lit(self.batch).alias("batch")
        ).cache()
        #  保存
        self.handle_save(df_all)


if __name__ == '__main__':
    update_flag = CommonUtil.get_sys_arg(1, None)
    if update_flag == 'update':
        site_name = CommonUtil.get_sys_arg(2, 'us')
        date_info = CommonUtil.get_sys_arg(3, CommonUtil.format_now('%Y-%m-%d'))
        obj = DwtMerchantwordsStDetail('us', '2024-1').handle_update(date_info)
    else:
        site_name = CommonUtil.get_sys_arg(1, 'us')
        batch = CommonUtil.get_sys_arg(2, '2024-1')
        DwtMerchantwordsStDetail(site_name, batch).run()