dwt_st_asin_reverse.py 16.2 KB
Newer Older
chenyuanjie committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
import os
import sys

from pyspark.storagelevel import StorageLevel

sys.path.append(os.path.dirname(sys.path[0]))  # 上级目录
from utils.templates import Templates
# from ..utils.templates import Templates
# from AmazonSpider.pyspark_job.utils.templates import Templates
# 分组排序的udf窗口函数
from pyspark.sql.window import Window
from pyspark.sql import functions as F
from pyspark.sql.types import StringType, IntegerType


class DwTStAsinReverse(Templates):

    def __init__(self, site_name="us", date_type="week", date_info="2022-1"):
        super().__init__()
        self.site_name = site_name
        self.date_type = date_type
        self.date_info = date_info
        self.db_save = f"dwt_st_asin_reverse"
        self.spark = self.create_spark_object(app_name=f"{self.db_save}, {self.site_name}, {self.date_type}, {self.date_info}")
        self.get_date_info_tuple()
        self.get_year_week_tuple()
        self.get_year_month_days_dict(year=int(self.year))
        self.df_st_asin = self.spark.sql(f"select 1+1;")
        self.df_st_asin_flow = self.spark.sql(f"select 1+1;")
        self.df_st = self.spark.sql(f"select 1+1;")
        self.df_st_measure = self.spark.sql(f"select 1+1;")
        self.df_st_key = self.spark.sql(f"select 1+1;")
        self.df_st_brand_label = self.spark.sql(f"select 1+1;")
        self.df_save = self.spark.sql(f"select 1+1;")
        self.df_save_std = self.spark.sql(f"select * from {self.db_save} limit 0;")
        self.u_st_type = self.spark.udf.register('u_st_type', self.udf_st_type, StringType())
        self.partitions_by = ['site_name', 'date_type', 'date_info']
        if self.date_type in ["week"]:
            self.reset_partitions(400)
        else:
            self.reset_partitions(1000)

    @staticmethod
    def udf_st_type(st_asin_zr_rate, zr_page1_flag, st_search_num, st_click_share_sum, st_conversion_share_sum):
        st_type_list = []
        if st_asin_zr_rate >= 0.05:
            st_type_list.append('1')  # 主要流量词
        if zr_page1_flag == 1:
            if st_search_num < 10000:
                st_type_list.append('2')  # 精准长尾词
            else:
                st_type_list.append('3')  # 精准流量词
        if st_click_share_sum > 0:
            if (st_conversion_share_sum - st_click_share_sum) / st_click_share_sum >= 0.2:
                st_type_list.append('4')  # 转化优质词
            else:
                st_type_list.append('5')  # 转化平稳词
            if (st_click_share_sum - st_conversion_share_sum) / st_click_share_sum >= 0.2:
                st_type_list.append('6')  # 转化流失词
        if st_conversion_share_sum > 0:
            st_type_list.append('7')  # 出单词
        if st_click_share_sum > 0 and st_conversion_share_sum == 0:
            st_type_list.append('8')  # 无效曝光词
        return ",".join(st_type_list) if st_type_list else ''

    def read_data(self):
        print("1 读取st+asin两个维度: dim_st_asin_info表和ods_rank_flow表")
        print("1.1 读取dim_st_asin_info表")
        # if (int(self.year) == 2022 and int(self.month) < 10) or int(self.year) <= 2021:
        #     sql = f"select * from dim_st_asin_info where site_name='{self.site_name}' and date_type='{self.date_type}' and date_info='{self.date_info}'"
        # else:
        #     sql = f"select * from dim_st_asin_info where site_name='{self.site_name}' and date_type='day' and date_info in {self.date_info_tuple}"  #  测试: and date_info>='2023-01-19'
        if date_type in ['month', 'month_week'] and ((self.site_name == 'us' and date_info >= '2023-10') or (self.site_name in ['uk', 'de'] and self.date_info >= '2024-05')):
            sql = f"select * from dim_st_asin_info where site_name='{self.site_name}' and date_type='{self.date_type}' and date_info = '{self.date_info}'"
        else:
            sql = f"select * from dim_st_asin_info where site_name='{self.site_name}' and date_type='week' and date_info in {self.year_week_tuple}"
        print("sql:", sql)
        self.df_st_asin = self.spark.sql(sqlQuery=sql)
        self.df_st_asin.persist(storageLevel=StorageLevel.MEMORY_ONLY)
        # self.df_st_asin = self.spark.sql(sqlQuery=sql).cache()
        self.df_st_asin = self.df_st_asin.withColumnRenamed("updated_time", "updated_at")
        self.df_st_asin.show(10, truncate=False)
        print("1.2 读取ods_rank_flow表")
        # sql = f"select rank as page_rank, flow from ods_rank_flow " \
        #       f"where site_name='{self.site_name}'"
        sql = f"select rank as st_asin_zr_page_rank, rank as st_asin_sp_page_rank, flow as st_asin_zr_rate, flow as st_asin_sp_rate from ods_rank_flow " \
              f"where site_name='{self.site_name}'"
        self.df_st_asin_flow = self.spark.sql(sql).cache()
        self.df_st_asin_flow.show(10, truncate=False)
        print("1.3 读取dim_st_detail表")
        sql = f"select search_term, st_rank, st_search_num, st_search_rate, st_search_sum, " \
              f"st_quantity_being_sold, st_click_share_sum, st_conversion_share_sum from dim_st_detail " \
              f"where site_name='{self.site_name}' and date_type='{self.date_type}' and date_info = '{self.date_info}';"
        print("sql:", sql)
        self.df_st = self.spark.sql(sql).cache()
        self.df_st = self.df_st.fillna(0)
        self.df_st.show(10, truncate=False)
        print("1.4 读取dwd_st_measure表")
        sql = f"select search_term, st_adv_counts, st_ao_val, st_zr_page1_title_appear_rate as zr_page1_flag from dwd_st_measure " \
              f"where site_name='{self.site_name}' and date_type='{self.date_type}' and date_info = '{self.date_info}';"
        print("sql:", sql)
        self.df_st_measure = self.spark.sql(sql).cache()
        self.df_st_measure.show(10, truncate=False)
        print("1.5 读取ods_st_key表")
        sql = f"select st_key, search_term from ods_st_key " \
              f"where site_name='{self.site_name}';"
        print("sql:", sql)
        self.df_st_key = self.spark.sql(sql).cache()
        self.df_st_key.show(10, truncate=False)
        print("1.6 读取dws_st_brand_info表")
        sql = f"select search_term, st_brand_label from dws_st_brand_info " \
              f"where site_name='{self.site_name}' and date_type='{self.date_type}' and date_info = '{self.date_info}';"
        print("sql:", sql)
        self.df_st_brand_label = self.spark.sql(sql).cache()
        self.df_st_brand_label.show(10, truncate=False)

    def handle_data(self):
        self.handle_st_duplicated()
        self.handle_st_asin_pivot()
        self.handle_st_asin_orders()
        self.handle_st_type()
        self.handle_st_dtypes()
        # self.handle_st_current_page_asin_counts()
        self.df_save = self.df_save.withColumn("site_name", F.lit(self.site_name))
        self.df_save = self.df_save.withColumn("date_type", F.lit(self.date_type))
        self.df_save = self.df_save.withColumn("date_info", F.lit(self.date_info))
        self.df_save = self.df_save.drop("zr_page1_flag", "st_click_share_sum", "st_conversion_share_sum")
        self.df_save = self.df_save_std.unionByName(self.df_save, allowMissingColumns=True)
        # self.df_save.show(20, truncate=False)
        print("cols:", self.df_save.columns)
        # quit()

    def handle_st_duplicated(self):
        print("2.2 根据search_term,asin,data_type进行去重, page_rank选择最小值")
        window = Window.partitionBy(['search_term', 'asin', 'data_type']).orderBy(
            self.df_st_asin.page_rank.asc(),
            self.df_st_asin.date_info.desc(),
        )
        self.df_st_asin = self.df_st_asin. \
            withColumn("page_rank_top", F.row_number().over(window=window))
        # print("self.df_st_asin_info, 开窗去重前:", self.df_st_asin_info.count())
        self.df_st_asin = self.df_st_asin.filter("page_rank_top=1")
        # print("self.df_st_asin_info, 开窗去重后:", self.df_st_asin_info.count())
        self.df_st_asin = self.df_st_asin.cache()
        # self.df_st_asin = self.df_st_asin.persist(storageLevel=StorageLevel.MEMORY_AND_DISK)
        # self.df_st_asin.show(10, truncate=False)

    def handle_st_asin_pivot(self):
        print(f"2.3 根据search_term和asin进行透视表")
        self.df_st_asin = self.df_st_asin. \
            withColumn("updated_at_data_type",
                       F.concat(F.lit("st_asin_"), self.df_st_asin.data_type, F.lit("_updated_at"))). \
            withColumn("page_data_type",
                       F.concat(F.lit("st_asin_"), self.df_st_asin.data_type, F.lit("_page"))). \
            withColumn("page_row_data_type",
                       F.concat(F.lit("st_asin_"), self.df_st_asin.data_type, F.lit("_page_row"))). \
            withColumn("page_rank_data_type",
                       F.concat(F.lit("st_asin_"), self.df_st_asin.data_type, F.lit("_page_rank")))
        df1 = self.df_st_asin.select("search_term", "asin", "updated_at_data_type", "updated_at"). \
            withColumnRenamed("updated_at_data_type", "pivot_key"). \
            withColumnRenamed("updated_at", "pivot_value")
        df2 = self.df_st_asin.select("search_term", "asin", "page_data_type", "page")
        # page_row和page_rank: 只有zr,sp才有
        self.df_st_asin = self.df_st_asin.filter("data_type in ('zr', 'sp')")
        df3 = self.df_st_asin.select("search_term", "asin", "page_row_data_type", "page_row")
        df4 = self.df_st_asin.select("search_term", "asin", "page_rank_data_type", "page_rank")
        self.df_save = df1.union(df2).union(df3).union(df4)
        df_st_zr_counts = self.df_st_asin.filter("data_type='zr'").groupby(["search_term", "page"]).agg(
            F.max('page_row').alias("st_zr_current_page_asin_counts"))
        df_st_sp_counts = self.df_st_asin.filter("data_type='sp'").groupby(["search_term", "page"]).agg(
            F.max('page_row').alias("st_sp_current_page_asin_counts"))
        df_st_zr_counts = df_st_zr_counts.withColumnRenamed("page", "st_asin_zr_page")
        df_st_sp_counts = df_st_sp_counts.withColumnRenamed("page", "st_asin_sp_page")
        self.df_save = self.df_save.groupby(["search_term", "asin"]). \
            pivot(f"pivot_key").agg(F.min(f"pivot_value")). \
            join(self.df_st_asin_flow.select("st_asin_zr_page_rank", "st_asin_zr_rate"), on=["st_asin_zr_page_rank"], how="left"). \
            join(self.df_st_asin_flow.select("st_asin_sp_page_rank", "st_asin_sp_rate"), on=["st_asin_sp_page_rank"], how="left"). \
            join(self.df_st_measure, on=["search_term"], how="left"). \
            join(self.df_st_key, on=["search_term"], how="left"). \
            join(self.df_st_brand_label, on=["search_term"], how="left"). \
            join(self.df_st, on=["search_term"], how="inner").join(
            df_st_zr_counts, on=["search_term", "st_asin_zr_page"], how='left'
        ).join(df_st_sp_counts, on=["search_term", "st_asin_sp_page"], how='left')

        # join(self.df_st_measure, on=["search_term"], how="inner"). \
        #     join(self.df_st_key, on=["search_term"], how="inner"). \

        self.df_save = self.df_save.fillna(
            {
                "st_asin_zr_rate": 0,
                "st_asin_sp_rate": 0
            }
        )
        # 释放内存
        del self.df_st_asin
        self.df_save.persist(storageLevel=StorageLevel.MEMORY_ONLY)

    def handle_st_asin_orders(self):
        print("2.4 计算zr, sp预估销量")
        self.df_save = self.df_save.withColumn(
            "st_asin_zr_orders", F.ceil(self.df_save.st_asin_zr_rate * self.df_save.st_search_sum)
        ).withColumn(
            "st_asin_sp_orders", F.ceil(self.df_save.st_asin_sp_rate * self.df_save.st_search_sum)
        )
        self.df_save = self.df_save.withColumn(
            "asin_st_zr_orders", self.df_save.st_asin_zr_orders
        ).withColumn(
            "asin_st_sp_orders", self.df_save.st_asin_sp_orders
        )
        df_asin_st_zr_orders_sum = self.df_save.groupby(['asin']). \
            agg({"st_asin_zr_orders": "sum"})
        df_asin_st_sp_orders_sum = self.df_save.groupby(['asin']). \
            agg({"st_asin_sp_orders": "sum"})
        df_asin_st_zr_orders_sum = df_asin_st_zr_orders_sum.withColumnRenamed("sum(st_asin_zr_orders)", "asin_st_zr_orders_sum")
        df_asin_st_sp_orders_sum = df_asin_st_sp_orders_sum.withColumnRenamed("sum(st_asin_sp_orders)", "asin_st_sp_orders_sum")
        df_asin_st_zr_orders_sum = df_asin_st_zr_orders_sum.withColumn(f"is_zr_flag", F.lit(1))
        df_asin_st_sp_orders_sum = df_asin_st_sp_orders_sum.withColumn(f"is_sp_flag", F.lit(1))

        df_st_asin_zr_orders_sum = self.df_save.groupby(['search_term']). \
            agg({"st_asin_zr_orders": "sum"})
        df_st_asin_zr_orders_sum = df_st_asin_zr_orders_sum.withColumnRenamed("sum(st_asin_zr_orders)", "st_asin_zr_orders_sum")
        df_st_asin_zr_orders_sum = df_st_asin_zr_orders_sum.withColumn(f"is_zr_flag", F.lit(1))
        df_st_asin_sp_orders_sum = self.df_save.groupby(['search_term']). \
            agg({"st_asin_sp_orders": "sum"})
        df_st_asin_sp_orders_sum = df_st_asin_sp_orders_sum.withColumnRenamed("sum(st_asin_sp_orders)", "st_asin_sp_orders_sum")
        df_st_asin_sp_orders_sum = df_st_asin_sp_orders_sum.withColumn(f"is_sp_flag", F.lit(1))
        self.df_save = self.df_save.withColumn("is_zr_flag", F.when(self.df_save.st_asin_zr_page > 0, 1))
        self.df_save = self.df_save.withColumn("is_sp_flag", F.when(self.df_save.st_asin_sp_page > 0, 1))
        self.df_save = self.df_save. \
            join(df_asin_st_zr_orders_sum, on=['asin', "is_zr_flag"], how='left'). \
            join(df_asin_st_sp_orders_sum, on=['asin', "is_sp_flag"], how='left'). \
            join(df_st_asin_zr_orders_sum, on=['search_term', "is_zr_flag"], how='left'). \
            join(df_st_asin_sp_orders_sum, on=['search_term', "is_sp_flag"], how='left')
        self.df_save = self.df_save.withColumn(
            "st_asin_zr_flow", F.round(self.df_save.st_asin_zr_orders / self.df_save.st_asin_zr_orders_sum, 4)
        )
        self.df_save = self.df_save.withColumn(
            "st_asin_sp_flow", F.round(self.df_save.st_asin_sp_orders / self.df_save.st_asin_sp_orders_sum, 4)
        )
        self.df_save = self.df_save.withColumn(
            "asin_st_zr_flow", F.round(self.df_save.asin_st_zr_orders / self.df_save.asin_st_zr_orders_sum, 4)
        )
        self.df_save = self.df_save.withColumn(
            "asin_st_sp_flow", F.round(self.df_save.asin_st_sp_orders / self.df_save.asin_st_sp_orders_sum, 4)
        )
        self.df_save = self.df_save.drop("is_zr_flag", "is_sp_flag")
        print("self.df_save.columns:", self.df_save.columns)

    def handle_st_type(self):
        print("2.5 根据search_term,asin等信息进行计算关键词的分类情况")
        self.df_save = self.df_save.withColumn(
            "st_type", self.u_st_type(
                "st_asin_zr_rate", "zr_page1_flag", "st_search_num", "st_click_share_sum", "st_conversion_share_sum"
            )
        )

    def handle_st_dtypes(self):
        print("2.5 更改pivot之后的列的数据类型, 保持和hive的数据类型一致")
        for col in self.df_save.columns:
            if ("_page" in col) or ("_page_row" in col) or ("_page_rank" in col):
                print("col:", col)
                self.df_save = self.df_save.withColumn(col, self.df_save[f'{col}'].cast("int"))

    def handle_st_current_page_asin_counts(self):
        df_st_zr_counts = self.df_st_asin.filter("data_type='zr'").groupby(["search_term", "page"]).agg(F.max('page_row').alias("st_zr_current_page_asin_counts"))
        df_st_sp_counts = self.df_st_asin.filter("data_type='sp'").groupby(["search_term", "page"]).agg(F.max('page_row').alias("st_sp_current_page_asin_counts"))
        df_st_zr_counts = df_st_zr_counts.withColumnRenamed("page", "st_asin_zr_page")
        df_st_sp_counts = df_st_sp_counts.withColumnRenamed("page", "st_asin_sp_page")
        self.df_save = self.df_save.join(
            df_st_zr_counts, on=["search_term", "st_asin_zr_page"], how='left'
        ).join(
            df_st_sp_counts, on=["search_term", "st_asin_sp_page"], how='left'
        )


if __name__ == '__main__':
    site_name = sys.argv[1]  # 参数1:站点
    date_type = sys.argv[2]  # 参数2:类型:week/4_week/month/quarter
    date_info = sys.argv[3]  # 参数3:年-周/年-月/年-季, 比如: 2022-1
    handle_obj = DwTStAsinReverse(site_name=site_name, date_type=date_type, date_info=date_info)
    handle_obj.run()