dwt_bsr_asin_detail_all.py 8.79 KB
Newer Older
chenyuanjie committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
import os
import sys

sys.path.append(os.path.dirname(sys.path[0]))
from utils.hdfs_utils import HdfsUtils

from pyspark.sql import functions as F, Window
from utils.common_util import CommonUtil, DateTypes
from utils.spark_util import SparkUtil
from pyspark.sql.types import BooleanType
from yswg_utils.common_df import get_self_asin_df
from yswg_utils.common_df import get_bsr_category_tree_df, get_asin_unlanuch_df
from yswg_utils.common_udf import category_craw_flag

"""
聚合bsr榜单Asin
"""


class DwtBsrAsinDetailAll(object):

    def __init__(self, site_name, date_info):
        self.site_name = site_name
        self.date_info = date_info
        app_name = f"{self.__class__.__name__}:{site_name}:{date_info}"
        self.spark = SparkUtil.get_spark_session(app_name)
        self.hive_tb = "dwt_bsr_asin_detail_all"
        self.current_month = CommonUtil.reformat_date(self.date_info, "%Y-%m-%d", "%Y-%m", )
        self.udf_category_craw_flag = F.udf(category_craw_flag, BooleanType())
        pass

    def run(self):
        df_dwt_flow_asin_part = CommonUtil.select_partitions_df(self.spark, "dwt_flow_asin")

        dwt_flow_asin_last_month = df_dwt_flow_asin_part \
            .filter(f"date_type = '{DateTypes.month.name}' and site_name = '{self.site_name}' ") \
            .selectExpr("max(date_info)").rdd.flatMap(lambda it: it).collect()[0]

        if date_info <= '2023-08-14':
            sql = f"""
with asin_all as (
	select *,
    row_number() over (order by site_name) as id
	from dwd_bsr_asin_rank
	where site_name = '{self.site_name}'
	  and date_type = 'last30day'
	  and date_info = '{self.date_info}'
),
	 asin_detail as (
		 select *
		 from dwt_bsr_asin_detail
		 where site_name = '{self.site_name}'
		   and date_info = '{self.current_month}'
	 )
select 
       id,
       asin_all.asin,
	   category_id,
	   bsr_rank,
	   is_1_day_flag,
	   is_7_day_flag,
	   is_30_day_flag,
	   bsr_count,
	   is_asin_new,
	   is_asin_bsr_new,
	   last_bsr_day,
	   title,
	   img_url,
	   img_type,
	   ao_val,
	   rating,
	   total_comments,
	   bsr_orders,
	   bsr_orders_change,
	   price,
	   weight,
	   launch_time,
	   brand_name,
	   buy_box_seller_type,
	   account_name,
	   volume,
	   last_update_time,
	   asin_air_freight_gross_margin,
	   asin_ocean_freight_gross_margin
from asin_all
		 left join asin_detail on asin_all.asin = asin_detail.asin;
"""
        else:
            sql = f"""
    with asin_all as (
        select asin,
               category_id,
               bsr_rank,
               is_1_day_flag,
               is_7_day_flag,
               is_30_day_flag,
               bsr_count,
               is_asin_new,
               is_asin_bsr_new,
               last_bsr_day,
               row_number() over (order by site_name) as id
        from dwd_bsr_asin_rank
        where site_name = '{self.site_name}'
          and date_type = 'last30day'
          and date_info = '{self.date_info}'
    ),
         account_name_tb as (
             select asin,
                    first(fd_account_name) as account_name
             from dim_fd_asin_info
             where site_name = '{self.site_name}'
             group by asin
         ),
         asin_his as (
             select asin,
                    asin_title               as title,
                    asin_img_url             as img_url,
                    asin_img_type            as img_type,
                    asin_rating              as rating,
                    asin_total_comments      as total_comments,
                    asin_price               as price,
                    asin_weight              as weight,
                    asin_launch_time         as launch_time,
                    asin_volume              as volume,
                    asin_brand_name          as brand_name,
                    asin_buy_box_seller_type as buy_box_seller_type,
                    asin_crawl_date          as last_update_time
             from dim_cal_asin_history_detail
             where site_name = '{self.site_name}'
         ),
         flow_asin as (
             select asin,
                    asin_ao_val                     as ao_val,
                    bsr_orders                      as bsr_orders,
                    asin_bsr_orders_change          as bsr_orders_change,
                    asin_air_freight_gross_margin   as asin_air_freight_gross_margin,
                    asin_ocean_freight_gross_margin as asin_ocean_freight_gross_margin
             from dwt_flow_asin
             where site_name = '{self.site_name}'
               and date_type = '{DateTypes.month.name}'
               and date_info = '{dwt_flow_asin_last_month}'
         )
    
    select id,
           asin_all.asin,
           category_id,
           bsr_rank,
           is_1_day_flag,
           is_7_day_flag,
           is_30_day_flag,
           bsr_count,
           is_asin_new,
           is_asin_bsr_new,
           last_bsr_day,
           title,
           img_url,
           img_type,
           ao_val,
           rating,
           total_comments,
           bsr_orders,
           bsr_orders_change,
           price,
           weight,
           launch_time,
           brand_name,
           buy_box_seller_type,
           account_name,
           volume,
           last_update_time,
           asin_air_freight_gross_margin,
           asin_ocean_freight_gross_margin
    from asin_all
             left join account_name_tb on asin_all.asin = account_name_tb.asin
             left join flow_asin on asin_all.asin = flow_asin.asin
             left join asin_his on asin_all.asin = asin_his.asin
                """
        print("======================查询sql如下======================")
        print(sql)

        df_all = self.spark.sql(sql)

        df_self_asin = get_self_asin_df(self.site_name, self.spark).select(
            F.col("asin"),
            F.lit(1).alias("asin_type"),
        )
        category_df = get_bsr_category_tree_df(self.site_name, self.spark).select(
            F.col("category_id"),
            F.col("category_first_id"),
        )
        df_unlanuch = get_asin_unlanuch_df(self.site_name, self.spark)

        df_all = df_all \
            .join(df_self_asin, on=["asin"], how='left') \
            .join(df_unlanuch, on=["asin"], how='left') \
            .join(category_df, on=["category_id"], how='left')

        df_all = df_all.withColumn("crawl_flag", self.udf_category_craw_flag(F.col("category_first_id"), F.col("asin")))
        # 生成id
        df_all = df_all.select(
            F.col("id"),
            F.col('asin'),
            F.col('category_id'),
            F.col('bsr_rank'),
            F.col('is_1_day_flag'),
            F.col('is_7_day_flag'),
            F.col('is_30_day_flag'),
            F.col('bsr_count'),
            F.col('is_asin_new'),
            F.col('is_asin_bsr_new'),
            F.col('last_bsr_day'),
            F.col('title'),
            F.col('img_url'),
            F.col('img_type'),
            F.col('ao_val'),
            F.col('rating'),
            F.col('total_comments'),
            F.col('bsr_orders'),
            F.col('bsr_orders_change'),
            F.col('price'),
            F.col('weight'),
            F.col('launch_time'),
            F.trim(F.col('brand_name')).alias("brand_name"),
            F.col('buy_box_seller_type'),
            F.col('account_name'),
            F.col('volume'),
            F.col('last_update_time'),
            F.col('asin_air_freight_gross_margin'),
            F.col('asin_ocean_freight_gross_margin'),
            F.col("category_first_id"),

            F.when(F.col("asin_type").isNotNull(), F.lit(1))
                .when(F.col("crawl_flag") == False, F.lit(2))
                .otherwise(0).alias("asin_type"),
            #  asin 下架时间
            F.col("asin_unlaunch_time"),
            F.lit(self.site_name).alias("site_name"),
            F.lit(self.date_info).alias("date_info")
        )

        df_all = df_all.repartition(15)
        partition_dict = {
            "site_name": self.site_name,
            "date_info": self.date_info
        }
        partition_by = list(partition_dict.keys())
        # 自动对齐
        df_all = CommonUtil.format_df_with_template(self.spark, df_all, self.hive_tb, roundDouble=True)
        hdfs_path = CommonUtil.build_hdfs_path(self.hive_tb, partition_dict=partition_dict)
        print(f"清除hdfs目录中:{hdfs_path}")
        HdfsUtils.delete_file_in_folder(hdfs_path)
        hive_tb = self.hive_tb
        print(f"当前存储的表名为:{hive_tb},分区为{partition_by}", )
        df_all.write.saveAsTable(name=hive_tb, format='hive', mode='append', partitionBy=partition_by)
        print("success")


if __name__ == '__main__':
    site_name = CommonUtil.get_sys_arg(1, None)
    date_info = CommonUtil.get_sys_arg(2, None)
    obj = DwtBsrAsinDetailAll(site_name=site_name, date_info=date_info)
    obj.run()