es_st_detail.py 12.7 KB
Newer Older
chenyuanjie committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
import sys

from sqlalchemy import create_engine
from pyspark.sql import SparkSession
from pyspark.sql.types import TimestampType
from pyspark import pandas as ps
import pandas as pd
from collections import OrderedDict
import time


class EsStDetail(object):

    def __init__(self, site_name='us', date_type="week", year=2022, week=1):
        self.site_name = site_name
        self.date_type = date_type
        self.year = year
        self.week = week
        # self.date_info = f"{self.year}-{self.week}"
        if self.date_type in ['4_week']:
            self.table_name = f"dwt_asin_last_4_week"
            self.date = time.strftime("%Y-%m-%d", time.localtime())
            self.es_table_name = f"{self.site_name}_st_detail_last_4_week"
            self.date_info = f"{self.year}-{self.week}"
        if self.date_type in ['month']:
            self.table_name = f"dwt_asin_month"  # 月
            import calendar  # 导入库
            lastDay = calendar.monthrange(self.year, self.week)[1]  # 指定年月的最后一天,即指定年月的整月总天数
            self.date = f"{self.year}-0{self.week}-{lastDay}" if self.week < 10 else f"{self.year}-{self.week}-{lastDay}"
            print("lastDay:", lastDay)  #
            self.date_info = f"{self.year}_{self.week}"
            self.es_table_name = f"{self.site_name}_st_detail_{self.date_type}_{self.date_info}"
        print("self.date:", self.date)  #
        # us_st_detail_month_2022_6
        if self.site_name == 'us':
            self.engine = create_engine(
                f'mysql+pymysql://adv_yswg:HmRCMUjt03M33Lze@rm-wz9yg9bsb2zf01ea4yo.mysql.rds.aliyuncs.com:3306/selection?charset=utf8mb4')  # , pool_recycle=3600
            self.es_port = '9200'
        else:
            if self.site_name in ['uk', 'de']:
                self.es_port = '9201'
            else:
                self.es_port = '9202'
            self.engine = create_engine(
                f'mysql+pymysql://adv_yswg:HmRCMUjt03M33Lze@rm-wz9yg9bsb2zf01ea4yo.mysql.rds.aliyuncs.com:3306/selection_{self.site_name}?charset=utf8mb4')  # , pool_recycle=3600
        self.df_read = object()
        self.df_spark = object()
        # 配置es的连接对象
        self.es_url = '120.79.147.190'
        self.es_user = 'elastic'
        self.es_pass = 'selection2021.+'

        # 创建spark对象
        print(f"当前同步:{self.table_name}:, {self.site_name}-{self.year}-{self.week}")
        self.spark = SparkSession.builder. \
            appName(f"{self.table_name}:, {self.site_name}-{self.year}-{self.week}"). \
            config("spark.sql.warehouse.dir", f"hdfs://hadoop5:8020/home/big_data_selection"). \
            config("spark.metastore.uris", "thrift://hadoop4:9083"). \
            config("spark.network.timeout", 10000000). \
            config("spark.sql.parquet.compression.codec", "lzo"). \
            enableHiveSupport(). \
            getOrCreate()
        self.spark.sql("set hive.exec.dynamic.partition.mode=nonstrict")
        self.spark.sql('''set mapred.output.compress=true''')
        self.spark.sql('''set hive.exec.compress.output=true''')
        self.spark.sql('''set mapred.output.compression.codec=com.hadoop.compression.lzo.LzopCodec''')
        self.spark.sql(f"use selection_off_line;")
        self.partition_type = "dt"

    def read_data(self):
        #sql = f"select * from {self.table_name} where site='{self.site_name}' and dt='{self.date_info}';"
        sql = f"""
	select
        t1.asin,ao_val,zr_counts,sp_counts,sb_counts,vi_counts,bs_counts,ac_counts,tr_counts,er_counts,bsr_orders,
        orders,sales as bsr_orders_sale,is_self,pt_category_id,one_category_id,title,title_len,price,rating,total_comments,
        t1.buy_box_seller_type,page_inventory,volume,weight,rank,if(launch_time<'1970-01-01 00:00:00',to_date('1970-01-01 00:00:00'),launch_time) as launch_time,img_num,img_type,activity_type,
        one_two_val,three_four_val,five_six_val,eight_val,qa_num,brand_name as brand,t1.variation_num,one_star,two_star,
        three_star,four_star,five_star,low_star,together_asin,account_name,account_id,site_name,
rank_rise, cast(rank_change as double) rank_change, cast(ao_rise as double) ao_rise, cast(ao_change as double) ao_change,  cast(price_rise as double) price_rise,  cast(price_change as double) price_change, orders_rise,  cast(orders_change as double) orders_change,  cast(rating_rise as double) rating_rise,  cast(rating_change as double) rating_change,
    comments_rise,cast(comments_change as double) comments_change, bsr_orders_rise, cast(bsr_orders_change as double) bsr_orders_change, cast(sales_rise as double) sales_rise, cast(sales_change as double) sales_change,  variation_rise, cast(variation_change as double) variation_change,
size_type, rating_type, t1.site_name_type, launch_time_type, weight_type, ao_type as ao_val_type, rank_type, price_type
from (
         select asin,ao_val,zr_counts,sp_counts,sb_counts,vi_counts,bs_counts,ac_counts,tr_counts,er_counts,bsr_orders,
                orders,sales,is_self,pt_category_id,one_category_id,title,title_len,price,rating,total_comments,
                buy_box_seller_type,page_inventory,volume,weight,rank,launch_time,img_num,img_type,activity_type,
                one_two_val,three_four_val,five_six_val,eight_val,qa_num,brand_name,variation_num,one_star,two_star,
                three_star,four_star,five_star,low_star,together_asin,account_name,account_id,site_name,
                case
                     when buy_box_seller_type = 1 then 4
                     when buy_box_seller_type != 1 and site_name like 'US%' then 1
                     when buy_box_seller_type != 1 and site_name like 'CN%' then 2
                     else 3 end  site_name_type,
                case
                              when rating is null then 0
                              when rating >= 4.5 then 1
                              when rating < 4.5 and rating >= 4 then 2
                              when rating < 4 and rating >= 3.5 then 3
                              when rating < 3.5 and rating >= 3 then 4
                              else 5 end              rating_type,
                          case
                              when weight is null then 0
                              when weight < 0.2 then 1
                              when weight >= 0.2 and weight < 0.4 then 2
                              when weight >= 0.4 and weight < 0.6 then 3
                              when weight >= 0.6 and weight < 1 then 4
                              when weight >= 1 and weight < 2 then 5
                              else 6 end              weight_type,
                          case
                              when rank is null then 0
                              when rank >= 1 and rank <= 999 then 1
                              when rank >= 1000 and rank <= 4999 then 2
                              when rank >= 5000 and rank <= 9999 then 3
                              when rank >= 10000 and rank <= 19999 then 4
                              when rank >= 20000 and rank <= 29999 then 5
                              when rank >= 30000 and rank <= 49999 then 6
                              when rank >= 50000 and rank <= 69999 then 7
                              else 8 end              rank_type,
                          case
                              when price is null then 0
                              when price < 10 then 1
                              when price >= 10 and price < 15 then 2
                              when price >= 15 and price < 20 then 3
                              when price >= 20 and price < 30 then 4
                              when price >= 30 and price < 50 then 5
                              else 6 end              price_type,
                          case
                              when ao_val is null then 0
                              when ao_val >= 0 and ao_val < 0.1 then 2
                              when ao_val >= 0.1 and ao_val < 0.2 then 2
                              when ao_val >= 0.2 and ao_val < 0.4 then 3
                              when ao_val >= 0.4 and ao_val < 0.8 then 4
                              when ao_val >= 0.8 and ao_val < 1.2 then 5
                              when ao_val >= 1.2 and ao_val < 2 then 6
                              else 7 end              ao_type,
                    case
                     when  launch_time is null then 0
                     when datediff('{self.date}',launch_time) <= 30 then 1
                     when months_between('{self.date}',launch_time) >=1 and
                          months_between('{self.date}',launch_time) <=3 then 2
                     when months_between('{self.date}',launch_time) >3 and
                          months_between('{self.date}',launch_time) <=6 then 3
                     when months_between('{self.date}',launch_time) >6 and
                          months_between('{self.date}',launch_time) <=12 then 4
                     when months_between('{self.date}',launch_time) >12 and
                          months_between('{self.date}',launch_time) <=24 then 5
                     when months_between('{self.date}',launch_time) >24 and
                          months_between('{self.date}',launch_time) <=36 then 6
                     else 7 end  launch_time_type

         from {self.table_name}
         where site = '{self.site_name}'
           and dt = '{self.date_info}'
     )t1
left join
    (
        select
            asin, rank_rise, rank_change, ao_rise, ao_change, price_rise, price_change, orders_rise, orders_change, rating_rise, rating_change,
            comments_rise,comments_change, bsr_orders_rise, bsr_orders_change, sales_rise, sales_change, variation_num, variation_rise, variation_change
        from ads_asin_detail_trend_month
        where site='{self.site_name}' and dt='{self.date_info}'
        )t2 on t1.asin=t2.asin
left join
    (select asin,size_type from dwt_asin_size where site_dt='{self.site_name}-9999-99' )t3 on t1.asin=t3.asin
group by t1.asin,ao_val,zr_counts,sp_counts,sb_counts,vi_counts,bs_counts,ac_counts,tr_counts,er_counts,bsr_orders,
                orders,sales,is_self,pt_category_id,one_category_id,title,title_len,price,rating,total_comments,
                t1.buy_box_seller_type,page_inventory,volume,weight,rank,launch_time,img_num,img_type,activity_type,
                one_two_val,three_four_val,five_six_val,eight_val,qa_num,brand_name,t1.variation_num,one_star,two_star,
                three_star,four_star,five_star,low_star,together_asin,account_name,account_id,site_name,
        rank_rise, rank_change, ao_rise, ao_change, price_rise, price_change, orders_rise, orders_change, rating_rise, rating_change,
            comments_rise,comments_change, bsr_orders_rise, bsr_orders_change, sales_rise, sales_change,  variation_rise, variation_change,
        size_type, rating_type, t1.site_name_type, launch_time_type, weight_type, ao_type, rank_type, price_type
	"""

        print("sql:", sql)
        self.df_spark = self.spark.sql(sqlQuery=sql)
        self.df_spark = self.df_spark.cache()
        self.df_spark.show(10)
        print("self.df_spark.count:", self.df_spark.count())
        print("分区数1:", self.df_spark.rdd.getNumPartitions())
        self.df_spark = self.df_spark.repartition(40)
        print("分区数2:", self.df_spark.rdd.getNumPartitions())

    def save_data(self):
        # 将结果写入es
        options = OrderedDict()
        options['es.nodes'] = self.es_url
        options['es.port'] = self.es_port
        options['es.net.http.auth.user'] = self.es_user
        options['es.net.http.auth.pass'] = self.es_pass
        options['es.mapping.id'] = "asin"
        options['es.resource'] = f'{self.es_table_name}/_doc'
        # 连接es的超时时间设置。默认1m
        # options['es.http.timeout'] = '10000m'
        options['es.nodes.wan.only'] = 'true'
        # # # 默认重试3次,为负值的话为无限重试(慎用)
        # # options['es.batch.write.retry.count'] = '15'
        # # 默认重试等待时间是 10s
        # options['es.batch.write.retry.wait'] = '60'
        # # 以下参数可以控制单次批量写入的数据量大小和条数(二选一)
        # options['es.batch.size.bytes'] = '20mb'
        # options['es.batch.size.entries'] = '20000'
        self.df_spark.write.format('org.elasticsearch.spark.sql').options(**options).mode('append').save()

    def run(self):
        self.read_data()
        self.save_data()


if __name__ == '__main__':
    site_name = sys.argv[1]  # 参数1:站点
    date_type = sys.argv[2]  # 参数2:week/month/quarter
    year = int(sys.argv[3])  # 参数2:year
    week = int(sys.argv[4])  # 参数3:week
    # handle_obj = EsBrandAnalytics(site_name=site_name, year=year)
    handle_obj = EsStDetail(site_name=site_name, date_type=date_type, year=year, week=week)
    handle_obj.run()