ods_brand_analytics.py 8 KB
Newer Older
chenyuanjie committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
"""
author: 方星钧(ffman)
description: 清洗6大站点对应的 “ods_brand_analytics” 的表: 排名权重计算,用天补全周/30天/月,存储新增的关键词
table_read_name: ods_brand_analytics
table_save_name: ods_brand_analytics
table_save_level: ods
version: 1.0
created_date: 2022-11-21
updated_date: 2022-11-21
"""


import os
import sys

sys.path.append(os.path.dirname(sys.path[0]))  # 上级目录
from pyspark.storagelevel import StorageLevel
from utils.templates import Templates
# from ..utils.templates import Templates
# from AmazonSpider.pyspark_job.utils.templates_test import Templates
from pyspark.sql.types import StringType
# 分组排序的udf窗口函数
from pyspark.sql.window import Window
from pyspark.sql import functions as F


class OdsBrandAnalytics(Templates):

    def __init__(self, site_name='us', date_type="month", date_info='2022-01'):
        super().__init__()
        self.site_name = site_name
        self.date_type = date_type
        self.date_info = date_info
        self.date_info2 = date_info
        self.db_save = f'ods_brand_analytics'
        self.spark = self.create_spark_object(app_name=f"{self.db_save}: {self.site_name}, {self.date_type}, {self.date_info}")
        # self.df_date = self.get_year_week_tuple()  # pandas的df对象
        self.df_st = self.spark.sql(f"select 1+1;")
        self.df_st_current = self.spark.sql(f"select 1+1;")
        self.df_st_rank = self.spark.sql(f"select 1+1;")
        self.df_save = self.spark.sql(f"select 1+1;")
        self.partitions_num = 1
        self.reset_partitions(partitions_num=self.partitions_num)
        self.partitions_by = ['site_name', 'date_type', 'date_info']
        if self.date_type in ['4_week', "last30day"]:
            print(f"date_type={self.date_type}, 无需导入数据")
        else:
            self.handle_st_import()
        self.get_year_week_tuple()
        # if self.date_type == '4_week':
        #     self.date_info = '2022-12-17'
        self.get_date_info_tuple()

    def read_data(self):
        if self.date_type == '4_week':
            # if self.site_name in ['us']:
            #     params1 = f"date_type='day' and date_info in {self.date_info_tuple}"
            # else:
            #     params1 = f"date_type='week' and date_info in {self.year_week_tuple}"
            params1 = f"date_type='week' and date_info in {self.year_week_tuple}"
            params2 = f" limit 0"
        elif self.date_type == 'week_old':
            # 旧版周表导入之后直接退出
            quit()
        elif self.date_type == 'month_old':
            params1 = f"date_type='week_old' and date_info in {self.year_week_tuple}"
            params2 = f""
        else:
            params1 = f"date_type='day' and date_info in {self.date_info_tuple}"
            params2 = f""
            if self.date_type == "last30day":
                params2 = f" limit 0"
        print("1.1 读取ods_brand_analytics表")
        # sql = f"select * from ods_brand_analytics where site_name='{self.site_name}' " \
        #       f"and date_type='day' and date_info in {self.date_info_tuple};"
        sql = f"select * from ods_brand_analytics where site_name='{self.site_name}' " \
              f"and {params1};"
        print("sql:", sql)
        self.df_st = self.spark.sql(sql).cache()
        self.df_st.show(10, truncate=False)
        if self.df_st.count() == 0:
            quit()

        # print("self.df_st:", self.df_st.drop_duplicates(['search_term']).count())
        print("1.2 读取ods_brand_analytics表")
        sql = f"select * from ods_brand_analytics where site_name='{self.site_name}' " \
              f"and date_type='{self.date_type}' and date_info = '{self.date_info}' {params2};"
        print("sql:", sql)
        self.df_st_current = self.spark.sql(sql).cache()
        self.df_st_current.show(10, truncate=False)

    def handle_data(self):
        self.handle_st_rank()
        self.handle_st_duplicated()
        self.df_save = self.df_save.withColumn("date_type", F.lit(self.date_type))
        self.df_save = self.df_save.withColumn("date_info", F.lit(self.date_info2))
        self.df_save.show(10, truncate=False)

    def handle_st_import(self):
        print(f"导入关键词数据: {self.site_name}, {self.date_type}, {self.date_info}")
        os.system(f"/mnt/run_shell/sqoop_shell/import/ods_brand_analytics.sh {self.site_name} {self.date_type} {self.date_info}")

    def handle_st_rank(self):
        self.df_st_rank = self.df_st.select("search_term", "rank", "date_info")
        self.df_st_current = self.df_st_current.withColumn("flag", F.lit(1))
        # self.df_st_rank.show(10, truncate=False)
        self.df_st_rank = self.df_st_rank.join(
            self.df_st_current.select("search_term", "flag"), on='search_term', how='left'
        )
        self.df_st_rank = self.df_st_rank.filter("flag is null")
        # self.df_st_rank.show(10, truncate=False)
        # count = self.df_st_current.count()  # 计算当前周/月关键词的数量
        df_count = self.df_st.groupby(['date_info']).count()
        # df_count.show(10, truncate=False)
        df_count = df_count.toPandas()
        date_dict = {date_info: count for date_info, count in zip(df_count.date_info, df_count['count'])}
        # print("date_dict:", date_dict)
        self.df_st_rank = self.df_st_rank.groupby(['search_term']). \
            pivot("date_info").agg(F.mean("rank"))
        # self.df_st_rank.show(10, truncate=False)
        self.df_st_rank = self.df_st_rank.fillna(date_dict)
        self.df_st_rank = self.df_st_rank.withColumn("rank_sum", F.lit(0))
        for col in date_dict.keys():
            print("col:", col)
            self.df_st_rank = self.df_st_rank.withColumn(
                "rank_sum", self.df_st_rank.rank_sum + self.df_st_rank[col]
            )
        self.df_st_rank = self.df_st_rank.withColumn(
            "rank_sum_avg", self.df_st_rank.rank_sum / len(self.date_info_tuple)
        )
        window = Window.orderBy(
            self.df_st_rank.rank_sum_avg.asc()
        )
        self.df_st_rank = self.df_st_rank.withColumn("rank_avg", F.row_number().over(window=window))
        self.df_st_rank = self.df_st_rank.drop("rank_sum", "rank_sum_avg")
        # self.df_st_rank.show(10, truncate=False)
        for col in date_dict.keys():
            self.df_st_rank = self.df_st_rank.drop(col)
        # self.df_st_rank.show(10, truncate=False)
        self.df_st_rank = self.df_st_rank.withColumnRenamed("rank_avg", "rank")
        # self.df_st_rank = self.df_st_rank.withColumn("rank", self.df_st_rank.rank+F.lit(self.df_st_current.rank.count()))
        df_max_rank = self.df_st_current.agg(F.max('rank').alias("max_rank"))
        df_max_rank = df_max_rank.toPandas()
        max_rank = list(df_max_rank.max_rank)[0] if self.date_type not in ['4_week', 'last30day'] else 0
        if self.date_type == 'last30day':
            self.df_st_rank = self.df_st_rank.fillna({'rank': 0})
        self.df_st_rank = self.df_st_rank.withColumn("rank", self.df_st_rank.rank+F.lit(max_rank))
        # print("self.df_st_rank:", self.df_st_rank.count())
        # self.df_st_rank.show(10, truncate=False)

    def handle_st_duplicated(self):
        # 默认取最新一天的关键词数据
        window = Window.partitionBy(['search_term']).orderBy(
            self.df_st.date_info.desc()
        )
        self.df_st = self.df_st.withColumn("rank_top", F.row_number().over(window))
        self.df_st = self.df_st.filter("rank_top=1")
        self.df_st = self.df_st.drop("rank_top", "rank")
        self.df_save = self.df_st_rank.join(
            self.df_st, on='search_term', how='left'
        )
        # print("self.df_save:", self.df_save.count())
        # self.df_save.show(10, truncate=False)


if __name__ == '__main__':
    site_name = sys.argv[1]  # 参数1:站点
    date_type = sys.argv[2]  # 参数2:类型:day/week/4_week/month/quarter
    date_info = sys.argv[3]  # 参数3:年-月-日/年-周/年-月/年-季, 比如: 2022-1
    handle_obj = OdsBrandAnalytics(site_name=site_name, date_type=date_type, date_info=date_info)
    handle_obj.run()