common_df.py 7.6 KB
Newer Older
chenyuanjie committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
from pyspark.sql.dataframe import DataFrame
from pyspark.sql.session import SparkSession
from pandas.core.frame import DataFrame as pd_DataFrame
from pyspark.sql.types import MapType, StringType
from yswg_utils.common_udf import parse_bsr_url
import pandas as pd


def asin_bsr_orders_df(df1, spark_session, site_name='us', date_info='2024-01'):
    # 计算asin的bsr月销量
    """
    df1: 带有 'asin', 'asin_bs_cate_1_rank', 'asin_bs_cate_1_id'字段
    # df2: 带有 'asin_bsr_orders', 'asin_bs_cate_1_rank', 'asin_bs_cate_1_id'字段
    spark_session: spark连接对象
    site_name: 站点, 默认 us
    date_info: 年月, 默认 2024-01
    """
    sql = f"""
        select category_id as asin_bs_cate_1_id, rank as asin_bs_cate_1_rank, ceil(orders) as asin_bsr_orders from ods_one_category_report " \
                  f"where site_name='{site_name}' and date_type='month' and date_info='{date_info}';
    """
    df2 = spark_session.sql(sql)
    df1 = df1.join(df2, on=['asin_bs_cate_1_rank', 'asin_bs_cate_1_id'], how='left')
    return df1


def get_bsr_tree_full_name_df(site_name: str, spark_session: SparkSession) -> DataFrame:
    """
    bsr tree 表获取 full_name
    :param site_name:
    :param spark_session:
    :return:
    """
    sql = f"""
            select category_id,
                   category_parent_id,
                   rel_first_id as category_first_id,
                   en_name,
                   null         as full_name
            from dim_bsr_category_tree
            where site_name = '{site_name}'
            order by nodes_num
            """

    pd_df_all = spark_session.sql(sql).toPandas()

    full_name_result_df = pd.DataFrame()

    def build_name(parent_ids: list, parent_df: pd_DataFrame):
        nonlocal full_name_result_df
        child_df = pd_df_all.query(f"category_parent_id in {str(parent_ids)} ")

        if child_df.empty:
            return
        merged = pd.merge(child_df, parent_df, left_on='category_parent_id', right_on='category_id', how='left')
        if len(parent_ids) == 1:
            merged['full_name'] = merged['en_name_x']
        else:
            merged['full_name'] = merged['full_name_y'].fillna("") + "›" + merged['en_name_x']

        select = {
            'category_id_x': 'category_id',
            'category_first_id_x': 'category_first_id',
            'category_parent_id_x': 'category_parent_id',
            'en_name_x': 'en_name',
            'full_name': 'full_name',
        }
        merged = merged.rename(columns=select)[[*select.values()]]
        full_name_result_df = pd.concat([full_name_result_df, merged], ignore_index=True)

        next_parent_ids = merged['category_id'].values.tolist()
        build_name(next_parent_ids, merged)

    parent_ids = ["0"]
    parent_df = pd_df_all.query(f"category_id in {str(parent_ids)} ")
    if not parent_df.empty:
        build_name(parent_ids, parent_df)

    result_df = spark_session.createDataFrame(full_name_result_df)
    result_df = result_df.drop_duplicates(['full_name'])
    return result_df


def get_asin_unlanuch_df(site_name: str, spark_session: SparkSession) -> DataFrame:
    """
    获取全部已下架asin详情
    :param site_name:
    :param spark_session:
    :return:
    """
    sql = f"""
        select asin, asin_unlaunch_time
        from dim_asin_err_state
        where site_name = '{site_name}'
    """
    return spark_session.sql(sql).cache()


def get_self_asin_df(site_name: str, spark_session: SparkSession) -> DataFrame:
    """
    获取是否是公司内部asin相关信息
    """
    sql = f"""
        select distinct  asin
        from ods_self_asin
        where site_name = '{site_name}'
    """
    return spark_session.sql(sql)


def get_node_first_id_df(site_name: str, spark_session: SparkSession) -> DataFrame:
    """
    获取nodeid 和 bsr 一级分类id对应关系
    :param site_name:
    :param spark_session:
    """
    sql = f"""
        select node_id,
               max(category_first_id) as category_first_id
        from dim_category_desc_id
        where site_name = '{site_name}'
        group by node_id
    """
    return spark_session.sql(sql)


def get_first_id_from_category_desc_df(site_name: str, spark_session: SparkSession)-> DataFrame:
    """
        获取分类id和分类名称的对应关系
    """
    sql = f"""
            select category_id as category_first_id, en_name as category_first_name 
            from big_data_selection.dim_bsr_category_tree
            where site_name = '{site_name}'
            and category_parent_id = 0 and delete_time is null
        """
    return spark_session.sql(sqlQuery=sql)


def get_bsr_category_tree_df(site_name: str, spark_session: SparkSession) -> DataFrame:
    """
    获取bsr分类树id和一级分类id对应关系
    :param site_name:
    :param spark_session:
    :return:
    """
    sql = f"""
        select category_id as category_id,
               rel_first_id as category_first_id,
               category_name
    from (
             select category_id,
                    rel_first_id,
                    en_name as category_name,
                    row_number() over (partition by category_id order by delete_time desc nulls first ) as row_number
             from dim_bsr_category_tree
             where site_name = '{site_name}'
         ) tmp
    where row_number = 1
    """
    return spark_session.sql(sql)


def get_old_id_category_df(site_name: str, spark_session: SparkSession) -> DataFrame:
    """
    获取bsr旧分类id和当前分类id对应关系
    :param site_name:
    :param spark_session:
    :return:
    """
    spark_session.udf.register("parse_bsr_url", parse_bsr_url, MapType(StringType(), StringType()))
    sql = f"""
            select id                                            as cate_1_id,
                   parse_bsr_url(nodes_num, path)['category_id'] as category_id
            from ods_bs_category
            where site_name = '{site_name}'
"""
    return spark_session.sql(sql)


def get_user_mask_type_asin_sql(site_name: str, day: str) -> DataFrame:
    """
    查询某日用户更新的流量选品字段数据
    usr_mask_type       类型
    usr_mask_progress   进度
    :return:
    """
    add_condition = ''
    if day is not None:
        add_condition = f"and create_time >='{day}' "
        pass

    return f"""
with df1 as (
	select edit_key_id as asin,
		   val_after   as usr_mask_type
	from (
			 select filed,
					edit_key_id,
					val_after,
					row_number() over ( partition by module,site_name, filed, edit_key_id order by id desc ) as last_row
			 from sys_edit_log
			 where val_after is not null
			   and edit_key_id is not null
			   and edit_key_id != ''
               and site_name = '{site_name}'
			   and user_id != 'admin'
			   and module in ('流量选品')
			   and filed in ('usr_mask_type')
               {add_condition}
		 ) tmp
	where last_row = 1
),
	 df2 as (
		 select edit_key_id as asin,
				val_after   as usr_mask_progress
		 from (
				  select filed,
						 edit_key_id,
						 val_after,
						 row_number() over ( partition by module,site_name, filed, edit_key_id order by id desc ) as last_row
				  from sys_edit_log
				  where val_after is not null
					and edit_key_id is not null
					and edit_key_id != ''
					and user_id != 'admin'
                    and site_name = '{site_name}'
					and module in ('流量选品')
					and filed in ('usr_mask_progress')
                   {add_condition}
			  ) tmp
		 where last_row = 1
	 )
select df1.asin, df1.usr_mask_type, df2.usr_mask_progress
from df1
		 full outer join df2 on df1.asin = df2.asin
"""

if __name__ == '__main__':
    print(get_user_mask_type_asin_sql("us", "2024-01-01"))