dim_asin_stable_info_old.py 11.4 KB
Newer Older
chenyuanjie committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
import os
import sys

os.environ["PYARROW_IGNORE_TIMEZONE"] = "1"
sys.path.append(os.path.dirname(sys.path[0]))  # 上级目录
from utils.templates import Templates
from ..utils.templates import Templates
from pyspark.sql.types import StringType, FloatType, StructType, StructField
# 分组排序的udf窗口函数
from pyspark.sql.window import Window
from pyspark.sql import functions as F
from ..yswg_utils.common_udf import parse_weight_str


class DimAsinStableInfo(Templates):

    def __init__(self, site_name='us'):
        super().__init__()
        self.site_name = site_name
        self.db_save = f'dim_asin_stable_info'
        self.spark = self.create_spark_object(app_name=f"{self.db_save}: {self.site_name}")
        self.df_asin_detail = self.spark.sql(f"select 1+1;")
        self.df_theme = self.spark.sql(f"select 1+1;")
        self.df_asin_img_url = self.spark.sql(f"select 1+1;")
        self.df_asin_title = self.spark.sql(f"select 1+1;")
        self.df_asin_weight = self.spark.sql(f"select 1+1;")
        self.df_asin_weight_new = self.spark.sql(f"select 1+1;")
        self.df_asin_weight_old = self.spark.sql(f"select 1+1;")
        self.df_asin_volume = self.spark.sql(f"select 1+1;")
        self.df_save = self.spark.sql(f"select 1+1;")
        self.partitions_by = ['site_name']
        self.reset_partitions(100)
        self.window = Window.orderBy(['asin']).orderBy(F.desc("date_info"))  # 按照 date_info 列进行分区,并按照 date 列进行排序

        schema = StructType([
            StructField('weight', FloatType(), True),
            StructField('weight_type', StringType(), True),
        ])
        self.u_get_weight = F.udf(parse_weight_str, schema)
        self.weight_type = 'pounds' if site_name == 'us' else 'grams'

        self.db_save_vertical = f'dim_asin_title_info_vertical'  # 主题竖表

    def sort_by_latest(self, df):
        df = df.withColumn('row_number', F.row_number().over(self.window))  # 使用窗口函数为每个分区的行编号
        df = df.filter(df.row_number == 1).drop(
            'row_number')  # 只保留每个分区中 row_number 最大的行,并删除 row_number 列
        return df

    def read_data(self):
        sql = f"select asin, img_url, title, weight, weight_str, volume, date_info " \
              f"from ods_asin_detail where site_name='{self.site_name}' and date_type='week';"
        print("sql:", sql)
        self.df_asin_detail = self.spark.sql(sql).cache()
        self.df_asin_detail.show(10, truncate=False)
        sql = f"select id as theme_id, theme_type_en, theme_en, theme_en_lower, theme_ch from ods_theme where site_name='{self.site_name}'"
        print("sql:", sql)
        self.df_theme = self.spark.sql(sql).cache()
        self.df_theme.show(10, truncate=False)

    def handle_data(self):
        self.handle_img_url()
        self.handle_title()
        self.handle_weight()
        self.handle_volume()

    def handle_img_url(self):
        self.df_asin_img_url = self.df_asin_detail.select("asin", "img_url").filter("img_url is not null")
        self.df_asin_img_url = self.df_asin_img_url.filter(self.df_asin_img_url.asin_img_url.contains('amazon'))  # 保留包含amazon的字符串记录
        self.df_asin_img_url = self.sort_by_latest(df=self.df_asin_img_url)
        for i in range(1, 10, 1):
            self.df_asin_img_url = self.df_asin_img_url.withColumn(f"asin_trun_{i}", F.substring(self.df_asin_img_url.asin, 1, 1))
        self.df_asin_img_url = self.df_asin_img_url.withColumn(
            "asin_img_path",
            F.concat(
                F.lit("/"), self.df_asin_img_url.asin_trun_1,
                F.lit("/"), self.df_asin_img_url.asin_trun_2,
                F.lit("/"), self.df_asin_img_url.asin_trun_3,
                F.lit("/"), self.df_asin_img_url.asin_trun_4,
                F.lit("/"), self.df_asin_img_url.asin_trun_5,
                F.lit("/"), self.df_asin_img_url.asin_trun_6,
                F.lit("/")
            )
        )

    def handle_title(self):
        # 过滤null和none字符串
        self.df_asin_title = self.df_asin_detail.select("asin", "title").filter("title is not null and title not in ('none', 'null', 'nan')")
        # 小写
        self.df_asin_title = self.df_asin_title.withColumn("title_lower", F.lower(self.df_asin_title["title"]))  # 小写
        # 取最新的date_info对应的title
        self.df_asin_title = self.sort_by_latest(df=self.df_asin_title)
        # 匹配主题数据
        self.handle_title_theme()
        self.reset_partitions(partitions_num=100)
        self.save_data_common(
            df_save=self.df_save_vertical,
            db_save=self.db_save_vertical,
            partitions_num=self.partitions_num,
            partitions_by=self.partitions_by
        )

    def handle_title_theme(self):
        pdf_theme = self.df_theme.toPandas()
        theme_list = list(set(pdf_theme.theme_en_lower))
        self.theme_list_str = str([f" {theme} " for theme in theme_list])
        print("self.theme_list_str:", self.theme_list_str)
        # 匹配宽表时用到
        df_asin_title = self.df_asin_title.cache()  # 后面用作匹配asin_title

        self.df_asin_title = self.df_asin_title.withColumn("asin_title_lower", F.concat(F.lit(" "), "asin_title_lower", F.lit(" ")))  # 标题两头加空字符串用来匹配整个词
        self.df_asin_title = self.df_asin_title.withColumn("theme_en_lower", self.u_theme_pattern('asin_title_lower', F.lit(self.theme_list_str)))
        # 将列拆分为数组多列
        self.df_asin_title = self.df_asin_title.withColumn("theme_en_lower", F.split(self.df_asin_title["theme_en_lower"], ","))
        # 将数组合并到多行
        self.df_asin_title = self.df_asin_title.withColumn("theme_en_lower", F.explode(self.df_asin_title["theme_en_lower"]))
        self.df_asin_title = self.df_asin_title.join(
            self.df_theme, on=['theme_en_lower'], how='left'  # 改成inner, 这样避免正则匹配结果不准
        )
        # 1. 竖表
        self.df_save_vertical = self.df_asin_title.cache()
        print(self.df_save_vertical.columns)
        self.df_save_vertical.show(30, truncate=False)
        # self.df_save_vertical.filter("theme_en_lower is not null").show(30, truncate=False)

        # 2. 宽表
        self.df_asin_title = self.df_asin_title.drop_duplicates(['asin', 'theme_type_en', 'theme_ch'])
        self.df_asin_title = self.df_asin_title.withColumn("theme_type_en_counts", F.concat("theme_type_en", F.lit("_counts")))
        self.df_asin_title = self.df_asin_title.withColumn("theme_type_en_ids", F.concat("theme_type_en", F.lit("_ids")))
        # self.df_asin_title.filter('theme_type_en_counts is null').show(20, truncate=False)   # 没有记录
        self.df_asin_title = self.df_asin_title.filter('theme_type_en_counts is not null')
        pivot_df1 = self.df_asin_title.groupBy("asin").pivot("theme_type_en_counts").agg(
            F.expr("IFNULL(count(*), 0) AS value"))
        pivot_df1 = pivot_df1.na.fill(0)
        pivot_df2 = self.df_asin_title.groupBy("asin").pivot("theme_type_en_ids").agg(
            F.concat_ws(",", F.collect_list("theme_id")))
        pivot_df1.show(30, truncate=False)
        pivot_df2.show(30, truncate=False)
        self.df_save_wide = df_asin_title.join(
            pivot_df1, on='asin', how='left'
        ).join(
            pivot_df2, on='asin', how='left'
        )
        # self.df_save_wide.show(30, truncate=False)
        print(self.df_save_wide.columns)

    def handle_weight(self):
        self.df_asin_weight_new = self.df_asin_detail.select("asin", "weight", "weight_str").filter("date_info >= '2023-18'").cache()
        self.df_asin_weight_old = self.df_asin_detail.select("asin", "weight", "weight_str").filter("date_info < '2023-18'").cache()
        self.handle_weight_new()
        self.handle_weight_old()
        print("self.df_asin_weight.columns:", self.df_asin_weight.columns)
        print("self.df_asin_weight_old.columns:", self.df_asin_weight_old.columns)
        self.df_asin_weight = self.df_asin_weight_new.unionByName(self.df_asin_weight_old, allowMissingColumns=True)
        self.df_asin_weight = self.sort_by_latest(df=self.df_asin_weight)
        # 将weight列中的'none'转为null,并转为浮点数类型
        self.df_asin_weight = self.df_asin_weight.withColumn("weight", F.when(F.col("weight") == 'none', None).otherwise(
                                                                 F.col("weight").cast(FloatType())))
        # weight列中小于等于0.001的值设为0.001
        self.df_asin_weight = self.df_asin_weight.withColumn("weight", F.when(F.col("weight") <= 0.001, 0.001).otherwise(F.col("weight")))
        # 保留4位小数
        self.df_asin_weight = self.df_asin_weight.withColumn("weight", F.round(self.df_asin_weight["weight"], 4))
        # self.df_asin_weight.show(20, truncate=False)


        self.df_asin_weight = self.df_asin_weight.withColumnRenamed(
            "weight_str", "asin_weight_str"
        ).withColumnRenamed(
            "weight", "asin_weight"
        ).withColumnRenamed(
            "weight_type", "asin_weight_type"
        )

    def handle_weight_new(self):
        print("开始处理重量数据: 2023-18周之后")
        # 将列类型转为字符串并转为小写
        self.df_asin_weight_new = self.df_asin_weight_new.withColumn("weight_str", F.lower(F.col("weight_str").cast(StringType())))
        # 提取体积字符串中的weight_info, weight_type
        self.df_asin_weight_new = self.df_asin_weight_new.withColumn('weight_detail', self.u_get_weight('weight_str', 'site_name'))
        self.df_asin_weight_new = self.df_asin_weight_new \
            .withColumn('weight', self.df_asin_weight_new.weight_detail.getField('weight')) \
            .withColumn('weight_type', self.df_asin_weight_new.weight_detail.getField('weight_type')) \
            .drop('weight_detail')

        # # 将weight列中的'none'转为null,并转为浮点数类型
        # self.df_asin_weight_new = self.df_asin_weight_new.withColumn("weight", F.when(F.col("weight") == 'none', None).otherwise(
        #                                                          F.col("weight").cast(FloatType())))
        #
        # # weight列中小于等于0.001的值设为0.001
        # self.df_asin_weight = self.df_asin_weight.withColumn("weight", F.when(F.col("weight") <= 0.001, 0.001).otherwise(F.col("weight")))

        # # 将weight_str列中的'none'转为null
        # self.df_asin_weight = self.df_asin_weight.withColumn("weight_str", F.when(F.col("weight_str") == 'none', None).otherwise(F.col("weight_str")))

    def handle_weight_old(self):
        print("开始处理重量数据: 2023-18周之前")
        self.df_asin_weight_old = self.df_asin_weight_old.withColumn("weight_type", F.lit(self.weight_type))
        window = Window.partitionBy(['asin']).orderBy(self.df_asin_weight_old.date_info.desc())
        self.df_asin_weight_old = self.df_asin_weight_old.withColumn(
            "row_number", F.row_number().over(window)
        )
        self.df_asin_weight_old = self.df_asin_weight_old.withColumn('row_number',
                                                                     F.row_number().over(window))  # 使用窗口函数为每个分区的行编号
        self.df_asin_weight_old = self.df_asin_weight_old.filter(self.df_asin_weight_old.row_number == 1).drop(
            'row_number')  # 只保留每个分区中 row_number 最大的行,并删除 row_number 列

    def handle_volume(self):
        pass