spider_asin_image.py 10.8 KB
Newer Older
chenyuanjie committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
import json
import os
import re
import sys
import time
import logging
import traceback
import zlib
import pandas as pd
import redis
from datetime import datetime
sys.path.append("/opt/module/spark-3.2.0-bin-hadoop3.2/demo/py_demo/")
sys.path.append(os.path.dirname(sys.path[0]))  # 上级目录
from sqlalchemy import create_engine
from utils.templates import Templates
# from ..utils.templates import Templates
from utils.templates_mysql import TemplatesMysql
# from ..utils.templates_mysql import TemplatesMysql
from pyspark.sql.types import IntegerType
from pyspark.sql import functions as F
from pyspark.sql.types import *
from utils.mysql_db import sql_connect, sql_update_many, sql_delete, get_country_engine
from pyspark.sql import SparkSession


class SpiderAsinImg(Templates):

    def __init__(self, site_name='us', consumer_type='lastest', batch_size=100000):
        super(SpiderAsinImg, self).__init__()
        self.site_name = site_name

        self.consumer_type = consumer_type  # 消费实时还是消费历史
        # 通过date_type 获取 topic
        self.get_topic_name()
        # 通过date_type 获取 schema
        self.init_schema()
        # self.topic_name = topic_name  # 主题名字
        self.batch_size = batch_size
        self.batch_size_history = int(batch_size / 10)
        # self.db_save = f'kafka_test_001'
        self.spark = self.create_spark_object(
            app_name=f"{self.db_save}: {self.site_name},{self.date_type}, {self.date_info}")
        # self.schema = self.init_schema()

        # 连接mysql
        self.engine = get_country_engine(self.site_name)
        self.pg14_engine = self.get_14pg_country_engine(self.site_name)
        sql_connect(self.site_name)
        logging.basicConfig(format='%(asctime)s %(name)s %(levelname)s %(message)s',
                            level=logging.INFO)

    def judge_spider_asin_detail_is_finished(self):
        while True:
            try:
                sql = f'SELECT * from workflow_progress WHERE page="ASIN详情" and site_name="{self.site_name}" and date_type="{self.date_type}" and date_info="{self.date_info}" and status_val=3'
                df = pd.read_sql(sql, con=self.engine)
                if df.shape[0] == 1:
                    print(f"ASIN详情状态为3, 抓取完成并终止程序, site_name:{self.site_name}, date_type:{self.date_type}, date_info:{self.date_info}")
                    self.spark.stop()
                    quit()  # 退出程序
                break
            except Exception as e:
                print(e, traceback.format_exc())
                time.sleep(10)
                self.engine = self.get_connection()

    def init_schema(self):
        self.schema = StructType([
            StructField("asin", StringType(), True),
            StructField("img_url", StringType(), True),
            StructField("img_order_by", StringType(), True),
            StructField("data_type", StringType(), True),
            StructField("site", StringType(), True),
        ])
        self.col = ["asin", "img_url", "img_order_by", "data_type", "site"]

    @staticmethod
    def clean_kafka_df(df):
        df = df.withColumnRenamed("seller_id", "account_id")
        # cols_python = ["asin", "parentAsin", "variat_num", "best_sellers_rank", "best_sellers_herf", "price", "rating",
        #         "brand", "brand", "account_id", "account_name", "account_url", "buy_box_seller_type",
        #         "volume", "weight", "weight_str", "launchTime", "total_comments", "page_inventory"]
        # oneCategoryRank, aoVal, bsrOrders, bsrOrdersSale
        # siteName volumeFormat weightFormat asinUpdateTime
        # java那边插件的字段名称
        cols_java = ['asin', 'parentAsin', 'asinVarNum', 'oneCategoryRank', 'bestSellersRank', 'lastHerf', 'aoVal', 'price', 'rating',
                    'bsrOrders', 'bsrOrdersSale', 'brandName', 'accountId', 'accountName', 'accountUrl', 'siteName', 'buyBoxSellerType',
                    'volume', 'volumeFormat', 'weight', 'weightFormat', 'launchTime', 'totalComments', 'pageInventory', 'asinUpdateTime']
        df = df.select("asin", "parentAsin", "variat_num", "best_sellers_rank", "best_sellers_herf", "price", "rating",
                        "brand", "account_id", "account_name", "account_url", "buy_box_seller_type",
                        "volume", "weight", "weight_str", "launch_time", "total_comments", "page_inventory", "asinUpdateTime", "site_name", "node_id")
        return df

    def get_topic_name(self):
        # 需要注意表名问题
        # 月表主题
        self.topic_name = f"{self.site_name}_asin_image"

    def handle_history(self):
        consumer = self.get_kafka_object_by_python(topic_name=self.topic_name)
        partition_data_count = self.get_kafka_partitions_data(consumer=consumer, topic_name=self.topic_name)

        beginning_offsets_list = []
        end_offsets_list = []
        for values in partition_data_count.values():
            beginning_offsets_list.append(values['beginning_offsets'])
            end_offsets_list.append(values['end_offsets'])

        min_offset = min(beginning_offsets_list)
        max_offset = max(end_offsets_list)

        # max_offset = max(partition_data_count.values())
        # for start_offset in range(0, max_offset+1, self.batch_size_history):
        for start_offset in range(min_offset, max_offset+1, self.batch_size_history):
            end_offset = start_offset + self.batch_size_history
            starting_offsets_json = json.dumps({self.topic_name: {str(p): start_offset for p in partition_data_count.keys()}})
            ending_offsets_json = json.dumps({self.topic_name: {str(p): end_offset for p in partition_data_count.keys()}})
            kafka_df = self.spark.read \
                .format("kafka") \
                .option("kafka.bootstrap.servers", self.kafka_servers) \
                .option("subscribe", self.topic_name) \
                .option("startingOffsets", starting_offsets_json) \
                .option("endingOffsets", ending_offsets_json) \
                .option("failOnDataLoss", "false") \
                .load() \
                .select(F.from_json(F.col("value").cast("string"), schema=self.schema).alias("data")) \
                .select("data.*")
            print(f"kafka_df.count():{kafka_df.count()}, start_offset:{start_offset}, end_offset:{end_offset}")
            pdf = kafka_df.toPandas()
            # pdf.to_sql()
            self.data_save(pdf)
        # 关闭SparkSession
        self.spark.stop()

    def get_14pg_country_engine(self, site_name="us"):
        h14_pg_us = {
            "user": "postgres",
            "password": "fazAqRRVV9vDmwDNRNb593ht5TxYVrfTyHJSJ3BS",
            # "host": "61.145.136.61",
            "host": "192.168.10.223",
            "port": "5432",
            # "port": 54328,
            "database": "selection",
        }
        if site_name == 'us' or site_name == 'mx':
            h14_pg_us["database"] = f"selection"
            db_ = 'postgresql+psycopg2://{}:{}@{}:{}/{}'.format(*h14_pg_us.values())
        # elif site_name == "keepa":
        #     db_ = 'mysql+pymysql://{}:{}@{}:{}/{}?charset={}'.format(*h6_pg_us.values())
        else:
            h14_pg_us["database"] = f"selection_{site_name}"
            db_ = 'postgresql+psycopg2://{}:{}@{}:{}/{}'.format(*h14_pg_us.values())
        engine = create_engine(db_, encoding='utf-8')  # , pool_recycle=3600
        return engine

    def data_save(self, df):
        df = df.toPandas()
        # 获取对应表字段
        df = df[self.col]
        if "site" not in df.keys():
            df["site"] = self.site_name
            logging.info("site is not null")
        df["site"] = df['site'].fillna("us")
        # df.drop_duplicates(subset=["asin", "site"], inplace=True)
        for name, group in df.groupby(['site']):
            asins = list(set(group["asin"]))
            logging.info(f"站点{name[0]}  asin:{asins}")
            if name[0] not in ['us', 'de', 'uk', 'it', 'es', 'fr', 'mx', 'ca']:
                logging.info("非8大站点跳过")
                continue
            # if len(asins) == 1:
            #     sql_del = f"delete from {name[0]}_asin_image where asin in ('{tuple(asins)[0]}');"
            # else:
            #     sql_del = f"delete from {name[0]}_asin_image where asin in {tuple(asins)};"
            # self.del_pg_asin(sql_del, site=self.site)
            # logging.info(f"清理{name[0]}_asin_image 表中数据   {asins}")
            del group["site"]
            # group.to_sql(name=f'{name[0]}_asin_image', con=self.pg14_engine, if_exists='append', index=False)
            logging.info(f"入库{name[0]}_asin_image成功")

    def start_stream(self, processing_time=300):
        logging.info(f"主题:{self.topic_name} 每 {processing_time} 秒  存储到数据库")
        kafka_df = self.get_kafka_df_by_spark(schema=self.schema, consumption_type="latest", topics=self.topic_name)
        query = kafka_df.writeStream.foreachBatch(self.process_batch).trigger(processingTime=f'{processing_time} seconds').start()
        query.awaitTermination()

    def process_batch(self, df, epoch_id):
        # self.judge_spider_asin_detail_is_finished()
        logging.info(f"当前批次传输的数据量为df.count():{df.count()}")
        # 确保schema非空以避免NoneType错误
        if not self.schema:
            raise ValueError("Schema is not defined")
        # df.show(5, truncate=False)
        logging.info(f"df.columns:{df.columns}")
        self.data_save(df)
        print("epoch_id:", epoch_id, datetime.now().strftime("%Y-%m-%d %H:%M:%S"))

    def run(self):
        if self.consumer_type == 'lastest':
            self.start_stream(processing_time=10)
        else:
            self.handle_history()


if __name__ == '__main__':
    site_name = sys.argv[1]  # 参数1:站点
    consumer_type = sys.argv[2]  # 参数2:实时 lastest 历史 lastest
    # us day date_info 2023-11-07
    handle_obj = SpiderAsinImg(site_name=site_name, consumer_type=consumer_type, batch_size=100000)
    handle_obj.run()

# /opt/module/spark/bin/spark-submit --packages org.apache.spark:spark-sql-kafka-0-10_2.12:3.1.3 --master yarn --driver-memory 2g --executor-memory 2g --executor-cores 1 --num-executors 1 --queue spark /opt/module/spark/demo/py_demo/my_kafka/spider_asin_image.py us lastest

# /opt/module/spark/bin/spark-submit --packages org.apache.spark:spark-sql-kafka-0-10_2.12:3.1.3 --master yarn --driver-memory 2g --executor-memory 2g --executor-cores 1 --num-executors 1 --queue spark /opt/module/spark/demo/py_demo/my_kafka/spider_asin_image.py us lastest

# /opt/module/spark/bin/spark-submit --packages org.apache.spark:spark-sql-kafka-0-10_2.12:3.1.3 --master yarn --driver-memory 2g --executor-memory 2g --executor-cores 1 --num-executors 1 --queue spark /opt/module/spark/demo/py_demo/my_kafka/spider_asin_image.py us lastest
# for i in `ps -ef|grep "spider_self_asin_detail" |awk '{print $2}' `; do kill -9 $i ; done;