dwd_st_asin_info.py 14.2 KB
Newer Older
chenyuanjie committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
"""
author: 方星钧(ffman)
description: 基于dim_st_asin_base_info等表,计算出search_term和asin维度的基础信息表(包括预估销量)
table_read_name: dim_st_asin_info, ods_rank_flow
table_save_name: dwd_st_asin_info
table_save_level: dwd
version: 3.0
created_date: 2022-05-12
updated_date: 2022-12-15
"""

import os
import sys

from pyspark.storagelevel import StorageLevel

sys.path.append(os.path.dirname(sys.path[0]))  # 上级目录
from utils.templates import Templates
# from ..utils.templates import Templates
#from AmazonSpider.pyspark_job.utils.templates import Templates
# 分组排序的udf窗口函数
from pyspark.sql.window import Window
from pyspark.sql import functions as F
from pyspark.sql.types import StringType, IntegerType


class DwdStAsinInfo(Templates):

    def __init__(self, site_name="us", date_type="week", date_info="2022-1"):
        super().__init__()
        self.site_name = site_name
        self.date_type = date_type
        self.date_info = date_info
        self.db_save = f"dwd_st_asin_info"
        self.spark = self.create_spark_object(app_name=f"{self.db_save} {self.site_name}, {self.date_info}")
        self.df_date = self.get_year_week_tuple()
        self.df_save = self.spark.sql(f"select 1+1;")
        self.df_templates = self.spark.sql(f"select * from dwd_st_asin_info limit 0;")
        # self.df_save_std = self.spark.sql(f"select * from {self.db_save} limit 0;")
        self.df_st_asin_info = self.spark.sql(f"select 1+1;")
        self.df_rank_flow = self.spark.sql(f"select 1+1;")
        self.df_st_info = self.spark.sql(f"select 1+1;")
        self.df_zr_page1_counts = self.spark.sql(f"select 1+1;")
        self.week_counts = 1 if self.date_type == 'week' else len(self.year_week_tuple)
        self.partitions_by = ['site_name', 'date_type', 'date_info']
        if self.date_type in ["week"]:
            self.reset_partitions(100)
        elif self.date_type in ["month", "4_week"]:
            self.reset_partitions(350)
        elif self.date_type in ["quarter"]:
            self.reset_partitions(600)
        self.u_week_counts_flag = self.spark.udf.register('u_week_counts_flag', self.udf_week_counts_flag, IntegerType())
        self.u_st_type = self.spark.udf.register('u_st_type', self.udf_st_type, StringType())

    @staticmethod
    def udf_week_counts_flag(zr_page1_counts, week_counts):
        if zr_page1_counts == week_counts:
            return 1
        else:
            return 0

    @staticmethod
    def udf_st_type(st_asin_zr_rate, zr_page1_flag, st_search_num, st_click_share1, st_conversion_share1, st_click_share2, st_conversion_share2, st_click_share3, st_conversion_share3):
        st_click_share_sum = st_click_share1 + st_click_share2 + st_click_share3
        st_conversion_share_sum = st_conversion_share1 + st_conversion_share2 + st_conversion_share3
        st_type_list = []
        if st_asin_zr_rate >= 0.05:
            st_type_list.append('1')  # 主要流量词
        if zr_page1_flag:
            if st_search_num < 10000:
                st_type_list.append('2')  # 精准长尾词
            else:
                st_type_list.append('3')  # 精准流量词
        if (st_conversion_share_sum - st_click_share_sum) / st_click_share_sum >= 0.2:
            st_type_list.append('4')  # 转化优质词
        else:
            st_type_list.append('5')  # 转化平稳词
        if (st_click_share_sum - st_conversion_share_sum) / st_click_share_sum >= 0.2:
            st_type_list.append('6')  # 转化流失词
        if st_conversion_share_sum > 0:
            st_type_list.append('7')  # 出单词
        if st_click_share_sum > 0 and st_conversion_share_sum == 0:
            st_type_list.append('8')  # 无效曝光词
        return ",".join(st_type_list) if st_type_list else ''

    def read_data(self):
        print("1.1 读取dim_st_asin_info表")
        sql = f"select * from dim_st_asin_info where site_name='{self.site_name}' and date_type='week' and date_info in {self.year_week_tuple}"
        self.df_st_asin_info = self.spark.sql(sqlQuery=sql).cache()
        self.df_st_asin_info = self.df_st_asin_info.withColumnRenamed("updated_time", "updated_at")
        self.df_st_asin_info.show(10, truncate=False)
        print("1.2 读取ods_rank_flow表")
        sql = f"select rank as st_asin_zr_page_rank, rank as st_asin_sp_page_rank, flow as st_asin_zr_rate, flow as st_asin_sp_rate from ods_rank_flow " \
              f"where site_name='{self.site_name}'"
        self.df_rank_flow = self.spark.sql(sql).cache()
        self.df_rank_flow.show(10, truncate=False)
        print("1.3 读取dim_st_info表")
        # sql = f"select search_term, st_rank, st_rank_avg, st_search_num, st_search_rate, st_search_sum from dim_st_info " \
        #       f"where site_name='{self.site_name}' and date_type='{self.date_type}' and date_info in {self.date_info_tuple};"
        sql = f"select search_term, st_rank, st_rank as st_rank_avg, st_search_num, st_search_rate, st_search_sum, " \
              f"st_click_share1, st_conversion_share1, st_click_share2, st_conversion_share2, st_click_share3, st_conversion_share3 from dim_st_detail " \
              f"where site_name='{self.site_name}' and date_type='{self.date_type}' and date_info = '{self.date_info}';"
        print("sql:", sql)
        self.df_st_info = self.spark.sql(sql).cache()
        self.df_st_info = self.df_st_info.fillna(0)
        self.df_st_info.show(10, truncate=False)

    def handle_data(self):
        self.handle_st_zr_page1_counts()
        self.handle_st_duplicated()
        self.handle_st_asin_pivot()
        self.handle_st_asin_orders()
        self.handle_st_type()
        self.handle_st_dtypes()
        self.df_save = self.df_save.withColumn("site_name", F.lit(self.site_name))
        self.df_save = self.df_save.withColumn("date_type", F.lit(self.date_type))
        self.df_save = self.df_save.withColumn("date_info", F.lit(self.date_info))
        self.df_save = self.df_templates.unionByName(self.df_save, allowMissingColumns=True)

        # self.df_save.show(20, truncate=False)

    def handle_st_zr_page1_counts(self):
        print("2.1 计算zr类型下,关键词对应的asin在选择的历史周中page=1出现的次数,如果全出现=1,否则=0")
        self.df_zr_page1_counts = self.df_st_asin_info.filter("data_type='zr' and page=1").\
            groupby(['search_term', 'asin']).\
            agg(F.count_distinct("date_info"))
        self.df_zr_page1_counts = self.df_zr_page1_counts.withColumnRenamed("count(date_info)", "zr_page1_counts")
        self.df_zr_page1_counts = self.df_zr_page1_counts.withColumn("week_counts", F.lit(self.week_counts))
        self.df_zr_page1_counts = self.df_zr_page1_counts.withColumn(
            "zr_page1_flag", self.u_week_counts_flag("zr_page1_counts", "week_counts")
        )
        # self.df_zr_page1_counts.show(10, truncate=False)

    def handle_st_duplicated(self):
        print("2.2 根据search_term,asin,data_type进行去重, page_rank选择最小值")
        window = Window.partitionBy(['search_term', 'asin', 'data_type']).orderBy(
            self.df_st_asin_info.page_rank.asc(),
            self.df_st_asin_info.date_info.desc(),
        )
        self.df_st_asin_info = self.df_st_asin_info. \
            withColumn("page_rank_top", F.row_number().over(window=window))
        # print("self.df_st_asin_info, 开窗去重前:", self.df_st_asin_info.count())
        self.df_st_asin_info = self.df_st_asin_info.filter("page_rank_top=1")
        # print("self.df_st_asin_info, 开窗去重后:", self.df_st_asin_info.count())
        self.df_st_asin_info = self.df_st_asin_info.persist(storageLevel=StorageLevel.MEMORY_AND_DISK)
        # self.df_st_asin_info.show(10, truncate=False)

    def handle_st_asin_pivot(self):
        print(f"2.3 根据search_term和asin进行透视表")
        self.df_st_asin_info = self.df_st_asin_info. \
            withColumn("updated_at_data_type",
                       F.concat(F.lit("st_asin_"), self.df_st_asin_info.data_type, F.lit("_updated_at"))). \
            withColumn("page_data_type",
                       F.concat(F.lit("st_asin_"), self.df_st_asin_info.data_type, F.lit("_page"))). \
            withColumn("page_row_data_type",
                       F.concat(F.lit("st_asin_"), self.df_st_asin_info.data_type, F.lit("_page_row"))). \
            withColumn("page_rank_data_type",
                       F.concat(F.lit("st_asin_"), self.df_st_asin_info.data_type, F.lit("_page_rank")))
        df1 = self.df_st_asin_info.select("search_term", "asin", "updated_at_data_type", "updated_at"). \
            withColumnRenamed("updated_at_data_type", "pivot_key"). \
            withColumnRenamed("updated_at", "pivot_value")
        df2 = self.df_st_asin_info.select("search_term", "asin", "page_data_type", "page")
        # page_row和page_rank: 只有zr,sp才有
        self.df_st_asin_info = self.df_st_asin_info.filter("data_type in ('zr', 'sp')")
        df3 = self.df_st_asin_info.select("search_term", "asin", "page_row_data_type", "page_row")
        df4 = self.df_st_asin_info.select("search_term", "asin", "page_rank_data_type", "page_rank")
        self.df_save = df1.union(df2).union(df3).union(df4)
        self.df_save = self.df_save.groupby(["search_term", "asin"]). \
            pivot(f"pivot_key").agg(F.min(f"pivot_value")). \
            join(self.df_zr_page1_counts, on=["search_term", "asin"], how="left"). \
            join(self.df_rank_flow.select("st_asin_zr_page_rank", "st_asin_zr_rate"), on=["st_asin_zr_page_rank"], how="left"). \
            join(self.df_rank_flow.select("st_asin_sp_page_rank", "st_asin_sp_rate"), on=["st_asin_sp_page_rank"], how="left"). \
            join(self.df_st_info, on=["search_term"], how="inner")  # ["search_term", "dt"]
        self.df_save = self.df_save.fillna(
            {
                "st_asin_zr_rate": 0,
                "st_asin_sp_rate": 0
            }
        )

    def handle_st_asin_orders(self):
        print("2.4 计算zr, sp预估销量")
        self.df_save = self.df_save.withColumn(
            "st_asin_zr_orders", F.ceil(self.df_save.st_asin_zr_rate * self.df_save.st_search_sum)
        ).withColumn(
            "st_asin_sp_orders", F.ceil(self.df_save.st_asin_sp_rate * self.df_save.st_search_sum)
        )
        self.df_save = self.df_save.withColumn(
            "asin_st_zr_orders", self.df_save.st_asin_zr_orders
        ).withColumn(
            "asin_st_sp_orders", self.df_save.st_asin_sp_orders
        )
        df_asin_st_zr_orders_sum = self.df_save.groupby(['asin']). \
            agg({"st_asin_zr_orders": "sum"})
        df_asin_st_sp_orders_sum = self.df_save.groupby(['asin']). \
            agg({"st_asin_sp_orders": "sum"})
        df_asin_st_zr_orders_sum = df_asin_st_zr_orders_sum.withColumnRenamed("sum(st_asin_zr_orders)", "asin_st_zr_orders_sum")
        df_asin_st_sp_orders_sum = df_asin_st_sp_orders_sum.withColumnRenamed("sum(st_asin_sp_orders)", "asin_st_sp_orders_sum")
        df_asin_st_zr_orders_sum = df_asin_st_zr_orders_sum.withColumn(f"is_zr_flag", F.lit(1))
        df_asin_st_sp_orders_sum = df_asin_st_sp_orders_sum.withColumn(f"is_sp_flag", F.lit(1))

        df_st_asin_zr_orders_sum = self.df_save.groupby(['search_term']). \
            agg({"st_asin_zr_orders": "sum"})
        df_st_asin_zr_orders_sum = df_st_asin_zr_orders_sum.withColumnRenamed("sum(st_asin_zr_orders)", "st_asin_zr_orders_sum")
        df_st_asin_zr_orders_sum = df_st_asin_zr_orders_sum.withColumn(f"is_zr_flag", F.lit(1))
        df_st_asin_sp_orders_sum = self.df_save.groupby(['search_term']). \
            agg({"st_asin_sp_orders": "sum"})
        df_st_asin_sp_orders_sum = df_st_asin_sp_orders_sum.withColumnRenamed("sum(st_asin_sp_orders)", "st_asin_sp_orders_sum")
        df_st_asin_sp_orders_sum = df_st_asin_sp_orders_sum.withColumn(f"is_sp_flag", F.lit(1))
        self.df_save = self.df_save.withColumn("is_zr_flag", F.when(self.df_save.st_asin_zr_page > 0, 1))
        self.df_save = self.df_save.withColumn("is_sp_flag", F.when(self.df_save.st_asin_sp_page > 0, 1))
        self.df_save = self.df_save. \
            join(df_asin_st_zr_orders_sum, on=['asin', "is_zr_flag"], how='left'). \
            join(df_asin_st_sp_orders_sum, on=['asin', "is_sp_flag"], how='left'). \
            join(df_st_asin_zr_orders_sum, on=['search_term', "is_zr_flag"], how='left'). \
            join(df_st_asin_sp_orders_sum, on=['search_term', "is_sp_flag"], how='left')
        self.df_save = self.df_save.withColumn(
            "st_asin_zr_flow", self.df_save.st_asin_zr_orders / self.df_save.st_asin_zr_orders_sum
        )
        self.df_save = self.df_save.withColumn(
            "st_asin_sp_flow", self.df_save.st_asin_sp_orders / self.df_save.st_asin_sp_orders_sum
        )
        self.df_save = self.df_save.withColumn(
            "asin_st_zr_flow", self.df_save.asin_st_zr_orders / self.df_save.asin_st_zr_orders_sum
        )
        self.df_save = self.df_save.withColumn(
            "asin_st_sp_flow", self.df_save.asin_st_sp_orders / self.df_save.asin_st_sp_orders_sum
        )
        self.df_save = self.df_save.drop("is_zr_flag", "is_sp_flag")
        print("self.df_save.columns:", self.df_save.columns)
        # self.df_save.show(10, truncate=False)

    def handle_st_type(self):
        print("2.5 根据search_term,asin等信息进行计算关键词的分类情况")
        self.df_save = self.df_save.withColumn(
            "st_type", self.u_st_type(
                "st_asin_zr_rate", "zr_page1_flag", "st_search_num", "st_click_share1", "st_conversion_share1",
                "st_click_share2", "st_conversion_share2", "st_click_share3", "st_conversion_share3"
            )
        )

    def handle_st_dtypes(self):
        print("2.5 更改pivot之后的列的数据类型, 保持和hive的数据类型一致")
        for col in self.df_save.columns:
            if ("_page" in col) or ("_page_row" in col) or ("_page_rank" in col):
                print("col:", col)
                self.df_save = self.df_save.withColumn(col, self.df_save[f'{col}'].cast("int"))


if __name__ == '__main__':
    site_name = sys.argv[1]  # 参数1:站点
    date_type = sys.argv[2]  # 参数2:类型:week/4_week/month/quarter
    date_info = sys.argv[3]  # 参数3:年-周/年-月/年-季, 比如: 2022-1
    handle_obj = DwdStAsinInfo(site_name=site_name, date_type=date_type, date_info=date_info)
    handle_obj.run()