dim_asin_weight_info.py 9.46 KB
Newer Older
chenyuanjie committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
import os
import sys
import re
import numpy as np

sys.path.append(os.path.dirname(sys.path[0]))  # 上级目录
from utils.templates import Templates
# from ..utils.templates import Templates
from pyspark.sql import functions as F
from pyspark.sql.types import StringType, FloatType, StructType, StructField
from pyspark.sql.window import Window


class DimAsinWeightInfo(Templates):

    def __init__(self, site_name='us'):
        super().__init__()
        self.site_name = site_name
        # 初始化self.spark对
        self.db_save = 'dim_asin_weight_info'
        self.spark = self.create_spark_object(
            app_name=f"{self.db_save}: {self.site_name}, {self.date_type}, {self.date_info}")
        self.df_asin_weight = self.spark.sql("select 1+1;")
        self.df_asin_weight_old = self.spark.sql("select 1+1;")
        self.df_save = self.spark.sql("select 1+1;")
        schema = StructType([
            StructField('weight', FloatType(), True),
            StructField('weight_type', StringType(), True),
        ])
        self.u_get_weight = F.udf(self.udf_get_weight, schema)
        # 分区参数
        self.partitions_by = ['site_name']
        self.partitions_num = 20
        # 重量类型: 2023-18之前
        self.weight_type = 'pounds' if site_name == 'us' else 'grams'

    @staticmethod
    def udf_get_weight(weight_str, site_name):
        if weight_str is None:
            # Return some default value or raise an exception.
            return (None, None)
        weight_type = 'pounds' if site_name == 'us' else 'grams'
        if 'pounds' in weight_str:
            match = re.search(r"(\d+\.{0,}\d{0,})\D{0,}pounds", weight_str)
            val = round(float(match.group(1)), 3) if site_name == 'us' and match else round(
                float(match.group(1)) * 1000 * 0.454, 3) if match else np.nan
        elif 'ounces' in weight_str:
            match = re.search(r"(\d+\.{0,}\d{0,})\D{0,}ounces", weight_str)
            val = round(float(match.group(1)) / 16, 3) if site_name == 'us' and match else round(
                float(match.group(1)) / 16 * 1000 * 0.454, 3) if match else np.nan
        # elif 'kilograms' in weight_str or ' kilogramos' in weight_str:
        elif any(substring in weight_str for substring in ['kilogram', ' kg']):
            weight_str = weight_str.replace(' kg', ' kilogram')
            match = re.search(r"(\d+\.{0,}\d{0,})\D{0,}kilogram", weight_str)
            val = round(float(match.group(1)) / 0.454, 3) if site_name == 'us' and match else round(
                float(match.group(1)) * 1000, 3) if match else np.nan
        # elif 'milligrams' in weight_str:
        elif any(substring in weight_str for substring in ['milligrams']):
            match = re.search(r"(\d+\.{0,}\d{0,})\D{0,}milligrams", weight_str)
            val = round(float(match.group(1)) / 1000 / 1000 / 0.454, 3) if site_name == 'us' and match else round(
                float(match.group(1)) / 1000, 3) if match else np.nan
        elif ' gram' in weight_str:
            match = re.search(r"(\d+\.{0,}\d{0,})\D{0,} gram", weight_str)
            val = round(float(match.group(1)) / 1000 / 0.454, 3) if site_name == 'us' and match else round(
                float(match.group(1)), 3) if match else np.nan
        elif ' g' in weight_str:
            match = re.search(r"(\d+\.{0,}\d{0,})\D{0,} g", weight_str)
            # val = round(float(match.group(1)) / 1000 / 0.454, 3) if site_name == 'us' else round(float(match.group(1)), 3) if match else np.nan
            val = round(float(match.group(1)) / 1000 / 0.454, 3) if site_name == 'us' and match else round(
                float(match.group(1)), 3) if match else np.nan
        else:
            val = 'none'
            weight_type = 'none'
        # val = val * 1000 * 0.454 if site_name != 'us' and val != 'none' else val
        weight = val
        return (weight, weight_type)

    def read_data(self):
        # sql = f"select asin, weight, weight_str, date_info from ods_asin_detail where site_name='{self.site_name}' and date_type='week'"  # and date_info>='2023-25'
        sql = f"select asin, weight, weight_str, site_name, date_info from ods_asin_detail where site_name='{self.site_name}' and date_type='week' and date_info>='2023-18' and weight_str is not null"  # and date_info>='2023-25'
        print("sql:", sql)
        self.df_asin_weight = self.spark.sql(sqlQuery=sql).cache()
        self.df_asin_weight.show(10, truncate=False)

        sql = f"select asin, weight, weight_str, site_name, date_info, '{self.weight_type}' as weight_type from ods_asin_detail where site_name='{self.site_name}' and date_type='week' and date_info<='2023-17' and weight is not null"  # and date_info>='2023-25'
        print("sql:", sql)
        self.df_asin_weight_old = self.spark.sql(sqlQuery=sql).cache()
        self.df_asin_weight_old.show(10, truncate=False)

    def handle_asin_weight(self):
        print("开始处理重量数据: 2023-18周之后")

        # 将列类型转为字符串并转为小写
        self.df_asin_weight = self.df_asin_weight.withColumn("weight_str",
                                                             F.lower(F.col("weight_str").cast(StringType())))

        # 对weight_str列应用自定义函数get_weight
        # get_weight_udf = F.udf(lambda x: get_weight(x, self.site_name), StringType())
        # self.df_asin_weight = self.df_asin_weight.withColumn("weight_info", get_weight_udf(F.col("weight_str")))

        # 分割weight_info列
        # split_col = F.split(self.df_asin_weight['weight_info'], ',')
        # self.df_asin_weight = self.df_asin_weight.withColumn('weight', split_col.getItem(0))
        # self.df_asin_weight = self.df_asin_weight.withColumn('weight_type', split_col.getItem(1))
        # 提取体积字符串中的weight_info, weight_type
        self.df_asin_weight = self.df_asin_weight.withColumn('weight_detail',
                                                             self.u_get_weight('weight_str', 'site_name'))
        self.df_asin_weight = self.df_asin_weight \
            .withColumn('weight', self.df_asin_weight.weight_detail.getField('weight')) \
            .withColumn('weight_type', self.df_asin_weight.weight_detail.getField('weight_type')) \
            .drop('weight_detail')

        # 将weight列中的'none'转为null,并转为浮点数类型
        self.df_asin_weight = self.df_asin_weight.withColumn("weight",
                                                             F.when(F.col("weight") == 'none', None).otherwise(
                                                                 F.col("weight").cast(FloatType())))

        # weight列中小于等于0.001的值设为0.001
        self.df_asin_weight = self.df_asin_weight.withColumn("weight",
                                                             F.when(F.col("weight") <= 0.001, 0.001).otherwise(
                                                                 F.col("weight")))

        # 将weight_str列中的'none'转为null
        self.df_asin_weight = self.df_asin_weight.withColumn("weight_str", F.when(F.col("weight_str") == 'none', None).otherwise(F.col("weight_str")))

        # 移除weight_info列
        # self.df_asin_weight = self.df_asin_weight.drop('weight_info')

        # 添加新列date_info
        # self.df_asin_weight = self.df_asin_weight.withColumn('date_info', F.lit(f'{self.year}-{self.week}'))
        # self.df_asin_weight.show(20, truncate=False)

    def handle_asin_weight_old(self):
        print("开始处理重量数据: 2023-18周之前")
        window = Window.partitionBy(['asin']).orderBy(self.df_asin_weight_old.date_info.desc())
        self.df_asin_weight_old = self.df_asin_weight_old.withColumn(
            "row_number", F.row_number().over(window)
        )
        self.df_asin_weight_old = self.df_asin_weight_old.withColumn('row_number', F.row_number().over(window))  # 使用窗口函数为每个分区的行编号
        self.df_asin_weight_old = self.df_asin_weight_old.filter(self.df_asin_weight_old.row_number == 1).drop('row_number')  # 只保留每个分区中 row_number 最大的行,并删除 row_number 列
        # self.df_asin_weight_old.show(20, truncate=False)

    def handle_data(self):
        self.handle_asin_weight()
        self.handle_asin_weight_old()
        print("self.df_asin_weight.columns:", self.df_asin_weight.columns)
        print("self.df_asin_weight_old.columns:", self.df_asin_weight_old.columns)
        self.df_save = self.df_asin_weight.unionByName(self.df_asin_weight_old, allowMissingColumns=True)
        window = Window.partitionBy(['asin']).orderBy(
            self.df_save.date_info.desc(),
        )
        self.df_save = self.df_save.withColumn(
            "row_number", F.row_number().over(window)
        )
        self.df_save = self.df_save.withColumn('row_number', F.row_number().over(window))  # 使用窗口函数为每个分区的行编号
        self.df_save = self.df_save.filter(self.df_save.row_number == 1).drop('row_number')  # 只保留每个分区中 row_number 最大的行,并删除 row_number 列

        self.df_save = self.df_save.withColumn("weight", F.round(self.df_save["weight"], 4))
        # self.df_save.show(20, truncate=False)

        self.df_save = self.df_save.withColumnRenamed(
            "weight_str", "asin_weight_str"
        ).withColumnRenamed(
            "weight", "asin_weight"
        ).withColumnRenamed(
            "weight_type", "asin_weight_type"
        )


if __name__ == '__main__':
    site_name = sys.argv[1]  # 参数1:站点
    handle_obj = DimAsinWeightInfo(site_name=site_name)
    handle_obj.run()