ods_brand_analytics.py 14.3 KB
Newer Older
chenyuanjie committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
"""
author: 方星钧(ffman)
description: 清洗6大站点对应的 “ods_brand_analytics” 的表: 排名权重计算,用天补全周/30天/月,存储新增的关键词
table_read_name: ods_brand_analytics
table_save_name: ods_brand_analytics
table_save_level: ods
version: 1.0
created_date: 2022-11-21
updated_date: 2022-11-21
"""


import os
import sys

sys.path.append(os.path.dirname(sys.path[0]))  # 上级目录
from pyspark.storagelevel import StorageLevel
from utils.templates import Templates
# from ..utils.templates import Templates
# from AmazonSpider.pyspark_job.utils.templates_test import Templates
from pyspark.sql.types import StringType
# 分组排序的udf窗口函数
from pyspark.sql.window import Window
from pyspark.sql import functions as F


class OdsBrandAnalytics(Templates):

    def __init__(self, site_name='us', date_type="month", date_info='2022-01'):
        super().__init__()
        self.site_name = site_name
        self.date_type = date_type
        self.date_info = date_info
        self.date_info2 = date_info
        self.db_save = f'ods_brand_analytics'
        self.spark = self.create_spark_object(app_name=f"{self.db_save}: {self.site_name}, {self.date_type}, {self.date_info}")
        # self.df_date = self.get_year_week_tuple()  # pandas的df对象
        self.df_st = self.spark.sql(f"select 1+1;")
        self.df_st_current = self.spark.sql(f"select 1+1;")
        self.df_st_rank = self.spark.sql(f"select 1+1;")
        self.df_save = self.spark.sql(f"select 1+1;")
        self.partitions_num = 1
        self.reset_partitions(partitions_num=self.partitions_num)
        self.partitions_by = ['site_name', 'date_type', 'date_info']
        self.get_year_week_tuple()
        if self.date_type in ['4_week', "last30day"]:
            print(f"date_type={self.date_type}, 无需导入数据")
        else:
            self.handle_st_import()
        # if self.date_type == '4_week':
        #     self.date_info = '2022-12-17'
        self.get_date_info_tuple()

    def read_data(self):
        if (self.date_type == 'week' and date_info >= '2023-21') or self.date_type == 'month_week':
            # 周的搜索词排名从2023-21周开始出现大量重复, 需要动态判断, 决定是否根据id大小给出新的排名
            pass
        else:

            if self.date_type == '4_week':
                # if self.site_name in ['us']:
                #     params1 = f"date_type='day' and date_info in {self.date_info_tuple}"
                # else:
                #     params1 = f"date_type='week' and date_info in {self.year_week_tuple}"
                params1 = f"date_type='week' and date_info in {self.year_week_tuple} and rank <= 1500000"
                params2 = f" limit 0"
            elif self.date_type == 'week_old':
                # 旧版周表导入之后直接退出
                quit()
            elif self.date_type in ['month_old']:
                params1 = f"date_type='week_old' and date_info in {self.year_week_tuple} and rank <= 1500000"
                params2 = f""
            elif self.date_type in ['month']:
                params1 = f"date_type='week' and date_info in {self.year_week_tuple} and rank <= 1500000"
                params2 = f""
            else:
                params1 = f"date_type='day' and date_info in {self.date_info_tuple}"
                params2 = f""
                if self.date_type == "last30day":
                    params2 = f" limit 0"
            print("1.1 读取ods_brand_analytics表")
            # sql = f"select * from ods_brand_analytics where site_name='{self.site_name}' " \
            #       f"and date_type='day' and date_info in {self.date_info_tuple};"
            sql = f"select * from ods_brand_analytics where site_name='{self.site_name}' " \
                  f"and {params1};"
            print("sql:", sql)
            self.df_st = self.spark.sql(sql).cache()
            self.df_st.show(10, truncate=False)
            # if self.df_st.count() == 0:
            #     quit()  # 此处停止会中断程序

            # print("self.df_st:", self.df_st.drop_duplicates(['search_term']).count())
            print("1.2 读取ods_brand_analytics表")
            sql = f"select * from ods_brand_analytics where site_name='{self.site_name}' " \
                  f"and date_type='{self.date_type}' and date_info = '{self.date_info}' {params2};"
            print("sql:", sql)
            self.df_st_current = self.spark.sql(sql).cache()
            self.df_st_current.show(10, truncate=False)

    def handle_us_week_rank(self, year_week='2023-46'):
        if self.date_type == 'month_week':
            sql = f"select * from ods_brand_analytics where site_name='{self.site_name}' and date_type='week' and date_info = '{year_week}';"
        else:
            sql = f"select * from ods_brand_analytics where site_name='{self.site_name}' and date_type='{self.date_type}' and date_info = '{self.date_info}';"

        print("sql:", sql)
        self.df_st = self.spark.sql(sql).cache()
        # 将读取的数据写入临时表
        self.df_st.createOrReplaceTempView("temp_table")
        self.df_st.unpersist()  # 停止对表的读取操作, 从而可以进行覆盖写入
        self.df_save = self.spark.sql("select * from temp_table").cache()
        self.df_save.show(10, truncate=False)
        st_count = self.df_save.count()
        # st_max = self.df_save.rank.max(
        # st_max = self.df_save.agg({"rank": "max"}).collect()[0][0]
        # rate = st_max / st_count
        if self.date_type != 'month_week':
            st_max = self.df_save.agg({"rank": "max"}).collect()[0][0]
            rate = st_max / st_count
            if rate >= 0.95:
                print("st_count, st_max, rate:", st_count, st_max, rate)
                quit()
        # elif st_count == 0:
        #     quit()
        else:
            if self.date_type == 'month_week':
                # for year_week in self.year_week_tuple:
                hdf_cmd = f"hdfs dfs -rm -f /home/big_data_selection/ods/ods_brand_analytics/site_name={self.site_name}/date_type=week/date_info={year_week}/*"
                # pass  # 无需删除
            else:
                hdf_cmd = f"hdfs dfs -rm -f /home/big_data_selection/ods/ods_brand_analytics/site_name={self.site_name}/date_type={self.date_type}/date_info={self.date_info}/*"
            print("hdf_cmd:", hdf_cmd)
            os.system(hdf_cmd)
            window = Window.orderBy(
                self.df_save.id.asc()
            )
            self.df_save = self.df_save.withColumn("rank", F.row_number().over(window=window))
            # self.df_save.write.saveAsTable(name=self.db_save, format='hive', mode='overwrite', partitionBy=self.partitions_by)
            # quit()
            if self.date_type == 'month_week':
                self.df_save = self.df_save.withColumn("date_type", F.lit('week'))
                self.df_save = self.df_save.withColumn("date_info", F.lit(year_week))
                self.df_save.show(10, truncate=False)
                self.save_data()

    def handle_data(self):
        if self.date_type in ['week', 'month_week']:
            if self.date_type == 'month_week':
                for year_week in self.year_week_tuple:
                    self.handle_us_week_rank(year_week=year_week)
                    # pass
                # 计算month_week
                sql = f"select * from ods_brand_analytics where site_name='{self.site_name}' and date_type='week' and date_info in {self.year_week_tuple} and rank <= 1500000;"
                print("sql:", sql)
                self.df_st = self.spark.sql(sql).cache()
                self.df_st.show(10, truncate=False)
                # 将读取的数据写入临时表
                self.df_st.createOrReplaceTempView("temp_table")
                self.df_st.unpersist()  # 停止对表的读取操作, 从而可以进行覆盖写入
                self.df_save = self.spark.sql("select * from temp_table").cache()
                sql = f"select * from ods_brand_analytics where site_name='{self.site_name}' " \
                      f"and date_type='{self.date_type}' and date_info = '{self.date_info}';"
                print("sql:", sql)
                self.df_st_current = self.spark.sql(sql).cache()
                self.df_st_current.show(10, truncate=False)

                self.handle_st_rank()
                self.handle_st_duplicated()
                self.df_save = self.df_save.withColumn("date_type", F.lit(self.date_type))
                self.df_save = self.df_save.withColumn("date_info", F.lit(self.date_info2))
                self.df_save.show(10, truncate=False)

                # # df 是您的DataFrame
                # nan_count_df = self.df_save.select([F.count(F.when(F.isnan(c) | F.col(c).isNull(), c)).alias(c) for c in self.df_save.columns])
                # nan_count_df.show()

                self.save_data()
                quit()
            else:
                self.handle_us_week_rank()
        # elif self.site_name == 'us' and self.date_type == 'month' and self.date_info >= '2023-09':
        #     quit()
        else:
            self.handle_st_rank()
            self.handle_st_duplicated()
        self.df_save = self.df_save.withColumn("date_type", F.lit(self.date_type))
        self.df_save = self.df_save.withColumn("date_info", F.lit(self.date_info2))
        self.df_save.show(10, truncate=False)

    def handle_st_import(self):
        print(f"导入关键词数据: {self.site_name}, {self.date_type}, {self.date_info}")
        if self.date_type in ['month_week', 'month']:
            # if self.date_type == 'month':
            os.system(f"/mnt/run_shell/sqoop_shell/import/ods_brand_analytics.sh {self.site_name} {self.date_type} {self.date_info}")
            for year_week in self.year_week_tuple:
                os.system(f"/mnt/run_shell/sqoop_shell/import/ods_brand_analytics.sh {self.site_name} week {year_week}")
        else:
            os.system(f"/mnt/run_shell/sqoop_shell/import/ods_brand_analytics.sh {self.site_name} {self.date_type} {self.date_info}")

    def handle_st_rank_old(self):
        self.df_st_rank = self.df_st.select("search_term", "rank", "date_info")

        self.df_st_current = self.df_st_current.withColumn("flag", F.lit(1))
        self.df_st_rank = self.df_st_rank.join(
            self.df_st_current.select("search_term", "flag"), on='search_term', how='left'
        )
        self.df_st_rank = self.df_st_rank.filter("flag is null")
        self.df_st_rank.show(10, truncate=False)

    def handle_st_rank(self):
        self.df_st_rank = self.df_st.select("search_term", "rank", "date_info")
        self.df_st_current = self.df_st_current.withColumn("flag", F.lit(1))
        # self.df_st_rank.show(10, truncate=False)
        self.df_st_rank = self.df_st_rank.join(
            self.df_st_current.select("search_term", "flag"), on='search_term', how='left'
        )
        self.df_st_rank = self.df_st_rank.filter("flag is null")
        self.df_st_rank.show(10, truncate=False)
        # count = self.df_st_current.count()  # 计算当前周/月关键词的数量
        df_count = self.df_st.groupby(['date_info']).count()
        # df_count.show(10, truncate=False)
        df_count = df_count.toPandas()
        date_dict = {date_info: count for date_info, count in zip(df_count.date_info, df_count['count'])}
        print("date_dict:", date_dict)
        self.df_st_rank = self.df_st_rank.groupby(['search_term']). \
            pivot("date_info").agg(F.mean("rank"))
        self.df_st_rank.show(10, truncate=False)
        self.df_st_rank = self.df_st_rank.fillna(date_dict)
        self.df_st_rank = self.df_st_rank.withColumn("rank_sum", F.lit(0))
        for col in date_dict.keys():
            print("col:", col)
            self.df_st_rank = self.df_st_rank.withColumn(
                "rank_sum", self.df_st_rank.rank_sum + self.df_st_rank[col]
            )
        self.df_st_rank = self.df_st_rank.withColumn(
            "rank_sum_avg", self.df_st_rank.rank_sum / len(self.date_info_tuple)
        )
        print("1111==============")
        self.df_st_rank.show(10, truncate=False)
        window = Window.orderBy(
            self.df_st_rank.rank_sum_avg.asc()
        )
        self.df_st_rank = self.df_st_rank.withColumn("rank_avg", F.row_number().over(window=window))
        self.df_st_rank = self.df_st_rank.drop("rank_sum", "rank_sum_avg")
        print("2222==============")
        self.df_st_rank.show(10, truncate=False)  # 这里都没有问题
        for col in date_dict.keys():
            self.df_st_rank = self.df_st_rank.drop(col)
        # self.df_st_rank.show(10, truncate=False)
        self.df_st_rank = self.df_st_rank.withColumnRenamed("rank_avg", "rank")
        # self.df_st_rank = self.df_st_rank.withColumn("rank", self.df_st_rank.rank+F.lit(self.df_st_current.rank.count()))

        df_max_rank = self.df_st_current.agg(F.max('rank').alias("max_rank"))
        df_max_rank.show(10, truncate=False)
        df_max_rank = df_max_rank.toPandas()
        max_rank = list(df_max_rank.max_rank)[0] if self.date_type not in ['4_week', 'last30day'] else 0
        max_rank = max_rank if self.df_st_current.count() != 0 else 0
        if self.date_type == 'last30day':
            self.df_st_rank = self.df_st_rank.fillna({'rank': 0})
        self.df_st_rank = self.df_st_rank.withColumn("rank", self.df_st_rank.rank+F.lit(max_rank))
        # print("self.df_st_rank:", self.df_st_rank.count())
        self.df_st_rank.show(10, truncate=False)

    def handle_st_duplicated(self):
        # 默认取最新一天的关键词数据
        window = Window.partitionBy(['search_term']).orderBy(
            self.df_st.date_info.desc()
        )
        self.df_st = self.df_st.withColumn("rank_top", F.row_number().over(window))
        self.df_st = self.df_st.filter("rank_top=1")
        self.df_st = self.df_st.drop("rank_top", "rank")
        self.df_save = self.df_st_rank.join(
            self.df_st, on='search_term', how='left'
        )
        # print("self.df_save:", self.df_save.count())
        # self.df_save.show(10, truncate=False)


if __name__ == '__main__':
    site_name = sys.argv[1]  # 参数1:站点
    date_type = sys.argv[2]  # 参数2:类型:day/week/4_week/month/quarter
    date_info = sys.argv[3]  # 参数3:年-月-日/年-周/年-月/年-季, 比如: 2022-1
    handle_obj = OdsBrandAnalytics(site_name=site_name, date_type=date_type, date_info=date_info)
    handle_obj.run()