es_brand_analytics.py 11.9 KB
Newer Older
chenyuanjie committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
import os
import sys

from sqlalchemy import create_engine
from pyspark.sql import SparkSession
from pyspark.sql import functions as F
from pyspark.sql.types import TimestampType
from pyspark import pandas as ps
import pandas as pd
from collections import OrderedDict
sys.path.append(os.path.dirname(sys.path[0]))  # 上级目录
from utils.templates import Templates


class EsBrandAnalytics(Templates):

    def __init__(self, site_name='us', date_type="week", date_info='2023-01'):
        self.site_name = site_name
        self.date_type = date_type
        self.date_info = date_info
        self.table_name = f"dwt_st_info"
        self.db_name = self.table_name
        self.year, self.week = date_info.split("-")
        # self.spark = self.create_spark_object(app_name=f"{self.db_name}: {self.site_name}, {self.date_type}, {self.date_info}")
        # self.get_date_info_tuple()
        self.es_table_name = f"{self.site_name}_brand_analytics_{self.date_type}".replace("week", f"{self.year}")
        if self.date_type == '4_week':
            self.es_table_name = f"{self.site_name}_brand_analytics_{self.date_type}"
        if self.site_name == 'us':
            self.engine = create_engine(
                f'mysql+pymysql://adv_yswg:HmRCMUjt03M33Lze@rm-wz9yg9bsb2zf01ea4yo.mysql.rds.aliyuncs.com:3306/selection?charset=utf8mb4')  # , pool_recycle=3600
            self.es_port = '9200'
        else:
            if self.site_name in ['uk', 'de']:
                self.es_port = '9201'
            else:
                self.es_port = '9202'
            self.engine = create_engine(
                f'mysql+pymysql://adv_yswg:HmRCMUjt03M33Lze@rm-wz9yg9bsb2zf01ea4yo.mysql.rds.aliyuncs.com:3306/selection_{self.site_name}?charset=utf8mb4')  # , pool_recycle=3600
        self.df_read = object()
        self.df_spark = object()
        # 配置es的连接对象
        self.es_url = '120.79.147.190'
        self.es_user = 'elastic'
        self.es_pass = 'selection2021.+'
        #self.es_resource = '{self.site_name}_test2/_doc'

        # 创建spark对象
        print(f"当前同步:{self.table_name}:, {self.site_name}-{self.year}-{self.week}")
        self.spark = SparkSession.builder. \
            appName(f"{self.table_name}:, {self.site_name}-{self.year}-{self.week}"). \
            config("spark.sql.warehouse.dir", f"hdfs://hadoop5:8020/home/big_data_selection"). \
            config("spark.metastore.uris", "thrift://hadoop4:9083"). \
            config("spark.network.timeout", 1000000). \
            config("spark.sql.parquet.compression.codec", "lzo"). \
            enableHiveSupport(). \
            getOrCreate()
        self.spark.sql("set hive.exec.dynamic.partition.mode=nonstrict")
        self.spark.sql('''set mapred.output.compress=true''')
        self.spark.sql('''set hive.exec.compress.output=true''')
        self.spark.sql('''set mapred.output.compression.codec=com.hadoop.compression.lzo.LzopCodec''')
        self.spark.sql(f"use big_data_selection;")
        self.partition_type = "dt"

    def read_data(self):
        sql = f"select * from {self.table_name} where site_name='{self.site_name}' and date_type='{self.date_type}' and date_info = '{self.date_info}';"
        print("sql:", sql)
        self.df_spark = self.spark.sql(sqlQuery=sql).cache()
        # self.df_spark = self.df_spark.cache()
        self.df_spark.show(10, truncate=False)
        #self.df_spark = self.df_spark.withColumn("created_time", self.df_spark.created_time.cast(TimestampType()))
        #self.df_spark = self.df_spark.withColumn("updated_time", self.df_spark.updated_time.cast(TimestampType()))
        self.df_spark = self.df_spark.dropDuplicates(["search_term"])
        print("self.df_spark.count:", self.df_spark.count())
        # self.df_spark = ps.from_pandas(self.df_spark).to_spark()
        print("分区数1:", self.df_spark.rdd.getNumPartitions())
        self.df_spark = self.df_spark.repartition(25)
        print("分区数2:", self.df_spark.rdd.getNumPartitions())

    def df_renamed(self):
        # self.df_spark = self.df_spark.withColumnRenamed("st_brand_id", "id")
        self.df_spark = self.df_spark.withColumnRenamed("st_rank", "rank")
        self.df_spark = self.df_spark.withColumnRenamed("st_asin1", "asin1")
        # self.df_spark = self.df_spark.withColumnRenamed("st_product_title1", "product_title1")
        self.df_spark = self.df_spark.withColumnRenamed("st_click_share1", "click_share1")
        self.df_spark = self.df_spark.withColumnRenamed("st_conversion_share1", "conversion_share1")
        self.df_spark = self.df_spark.withColumnRenamed("st_asin2", "asin2")
        # self.df_spark = self.df_spark.withColumnRenamed("st_product_title2", "product_title2")
        self.df_spark = self.df_spark.withColumnRenamed("st_click_share2", "click_share2")
        self.df_spark = self.df_spark.withColumnRenamed("st_conversion_share2", "conversion_share2")
        self.df_spark = self.df_spark.withColumnRenamed("st_asin3", "asin3")
        # self.df_spark = self.df_spark.withColumnRenamed("st_product_title3", "product_title3")
        self.df_spark = self.df_spark.withColumnRenamed("st_click_share3", "click_share3")
        self.df_spark = self.df_spark.withColumnRenamed("st_conversion_share3", "conversion_share3")
        self.df_spark = self.df_spark.withColumnRenamed("st_click_share_sum", "click_share_sum")
        self.df_spark = self.df_spark.withColumnRenamed("st_conversion_share_sum", "conversion_share_sum")
        self.df_spark = self.df_spark.withColumnRenamed("st_is_first_text", "is_first_text")
        self.df_spark = self.df_spark.withColumnRenamed("st_is_ascending_text_rate", "is_ascending_text_rate")
        self.df_spark = self.df_spark.withColumnRenamed("st_is_ascending_text", "is_ascending_text")
        self.df_spark = self.df_spark.withColumnRenamed("st_is_search_text_rate", "is_search_text_rate")
        self.df_spark = self.df_spark.withColumnRenamed("st_is_search_text", "is_search_text")
        self.df_spark = self.df_spark.withColumnRenamed("st_quantity_being_sold", "quantity_being_sold")
        self.df_spark = self.df_spark.withColumnRenamed("st_ao_val", "ao_val")
        self.df_spark = self.df_spark.withColumnRenamed("st_ao_val_rank", "ao_val_rank")
        self.df_spark = self.df_spark.withColumnRenamed("st_ao_val_rate", "ao_val_rate")
        self.df_spark = self.df_spark.withColumnRenamed("st_asin_bs_orders_sum", "bsr_orders")
        self.df_spark = self.df_spark.withColumnRenamed("st_asin_orders_sum", "asin_orders")
        self.df_spark = self.df_spark.withColumnRenamed("st_asin_counts", "asin_counts")
        self.df_spark = self.df_spark.withColumnRenamed("st_asin_new_counts", "asin_new_counts")
        self.df_spark = self.df_spark.withColumnRenamed("st_asin_new_counts_rate", "asin_new_counts_rate")
        self.df_spark = self.df_spark.withColumnRenamed("st_asin_new_orders_sum", "asin_new_orders")
        self.df_spark = self.df_spark.withColumnRenamed("st_asin_new_orders_rate", "asin_new_orders_rate")
        self.df_spark = self.df_spark.withColumnRenamed("st_bsr_cate_1_id", "category_id")
        self.df_spark = self.df_spark.withColumnRenamed("st_bsr_cate_current_id", "category_current_id")
        self.df_spark = self.df_spark.withColumnRenamed("st_search_sum", "orders")
        self.df_spark = self.df_spark.withColumnRenamed("st_zr_counts", "zr_counts")
        self.df_spark = self.df_spark.withColumnRenamed("st_sp_counts", "sp_counts")
        self.df_spark = self.df_spark.withColumnRenamed("st_sb_counts", "sb_counts")
        self.df_spark = self.df_spark.withColumnRenamed("st_sb1_counts", "sb1_counts")
        self.df_spark = self.df_spark.withColumnRenamed("st_sb2_counts", "sb2_counts")
        self.df_spark = self.df_spark.withColumnRenamed("st_sb3_counts", "sb3_counts")
        self.df_spark = self.df_spark.withColumnRenamed("st_adv_counts", "adv_counts")
        self.df_spark = self.df_spark.withColumnRenamed("st_ac_counts", "ac_counts")
        self.df_spark = self.df_spark.withColumnRenamed("st_bs_counts", "bs_counts")
        self.df_spark = self.df_spark.withColumnRenamed("st_er_counts", "er_counts")
        self.df_spark = self.df_spark.withColumnRenamed("st_tr_counts", "tr_counts")
        self.df_spark = self.df_spark.withColumnRenamed("asin1_price", "price1")
        self.df_spark = self.df_spark.withColumnRenamed("asin1_rating", "rating1")
        self.df_spark = self.df_spark.withColumnRenamed("asin1_total_comments", "total_comments1")
        self.df_spark = self.df_spark.withColumnRenamed("st_asin1_bs_orders", "bs_orders1")
        self.df_spark = self.df_spark.withColumnRenamed("st_is_new_market_segment", "is_new_market_segment")
        # if self.date_type == '4_week':
        #     self.df_spark = self.df_spark.withColumn("dt", F.lit(f"{self.year}_{int(self.week)}"))
        self.df_spark = self.df_spark.withColumn("dt", F.lit(f"{self.year}_{int(self.week)}"))
        self.df_spark = self.df_spark.withColumn("id", F.concat(F.lit(f"{self.year}{int(self.week)}"), self.df_spark.rank))

    def save_data(self):
        # 将结果写入es
        options = OrderedDict()
        options['es.nodes'] = self.es_url
        options['es.port'] = self.es_port
        options['es.net.http.auth.user'] = self.es_user
        options['es.net.http.auth.pass'] = self.es_pass
        options['es.mapping.id'] = "id"
        # options['es.mapping.id'] = "search_term"
        options['es.resource'] = f'{self.es_table_name}/_doc'
        # 连接es的超时时间设置。默认1m
        # options['es.http.timeout'] = '10000m'
        options['es.nodes.wan.only'] = 'true'
        # # # 默认重试3次,为负值的话为无限重试(慎用)
        # # options['es.batch.write.retry.count'] = '15'
        # # 默认重试等待时间是 10s
        # options['es.batch.write.retry.wait'] = '60'
        # # 以下参数可以控制单次批量写入的数据量大小和条数(二选一)
        # options['es.batch.size.bytes'] = '20mb'
        # options['es.batch.size.entries'] = '20000'
        self.df_spark = self.df_spark.withColumn(
            "st_zr_page1_in_title_rate",
            F.round(self.df_spark.st_zr_page1_in_title_counts / self.df_spark.st_zr_page1_counts, 4)
        )
        self.df_spark = self.df_spark.drop("site_name", "st_asin_top1", "st_asin_top2", "st_asin_top3", "date_type", "date_info")
        print("self.df_spark.columns:", self.df_spark.columns)
        self.df_spark.write.format('org.elasticsearch.spark.sql').options(**options).mode('append').save()

    def connection_pg(self):
        PG_CONN_DICT = {
            "pg_port": 5432,
            "pg_db": "selection",
            "pg_user": "postgres",
            "pg_pwd": "fazAqRRVV9vDmwDNRNb593ht5TxYVrfTyHJSJ3BS",
            "pg_host": "192.168.10.216",
        }
        if self.site_name == 'us':
            db = 'selection'
        else:
            db = f'selection_{self.site_name}'
        self.engine_pg = create_engine(
            f"postgresql+psycopg2://{PG_CONN_DICT['pg_user']}:{PG_CONN_DICT['pg_pwd']}@{PG_CONN_DICT['pg_host']}:{PG_CONN_DICT['pg_port']}/{db}",
            encoding='utf-8')
        return self.engine_pg

    def save_data_to_pg(self):
        print("开始同步pg")
        self.connection_pg()
        self.df_spark = self.df_spark.drop("id")
        self.df_spark = self.df_spark.withColumn('dt', F.lit(self.date_info))
        df_save = self.df_spark.toPandas()
        df_save.to_sql(f"aba_year_{self.date_type}_{self.date_info.replace('-', '_')}_old", con=self.engine_pg, index=False, if_exists="append")

    def run(self):
        self.read_data()
        self.df_renamed()
        self.save_data()
        self.save_data_to_pg()


if __name__ == '__main__':
    site_name = sys.argv[1]  # 参数1:站点
    date_type = sys.argv[2]  # 参数2:week/month/quarter
    date_info = sys.argv[3]  # 参数2:week/month/quarter
    # handle_obj = EsBrandAnalytics(site_name=site_name, year=year)
    handle_obj = EsBrandAnalytics(site_name=site_name, date_type=date_type, date_info=date_info)
    handle_obj.run()