dwd_asin_to_pg.py 14.4 KB
Newer Older
chenyuanjie committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
import os
import random
import sys
import time
import traceback

import pandas as pd
from pyspark.storagelevel import StorageLevel
sys.path.append(os.path.dirname(sys.path[0]))  # 上级目录
from utils.templates import Templates
# from ..utils.templates import Templates
# from AmazonSpider.pyspark_job.utils.templates import Templates
from pyspark.sql.types import StructType, StructField, IntegerType, StringType
# 分组排序的udf窗口函数
from pyspark.sql.window import Window
from pyspark.sql import functions as F
from utils.db_util import DbTypes, DBUtil
from utils.common_util import CommonUtil


class DwdAsinToPg(Templates):

    def __init__(self, site_name="us", date_type="week", date_info="2022-1"):
        super().__init__()
        self.site_name = site_name
        self.date_type = date_type
        self.date_info = date_info
        self.db_save = f"dwd_asin_to_pg"
        self.spark = self.create_spark_object(app_name=f"{self.db_save}: {self.site_name}, {self.date_type}, {self.date_info}")
        self.df_save = self.spark.sql(f"select 1+1;")
        self.df_st_asin_today = self.spark.sql(f"select 1+1;")
        self.df_st_asin_last_5_day = self.spark.sql(f"select 1+1;")
        self.df_asin_variation = self.spark.sql(f"select 1+1;")
        self.df_asin_stable = self.spark.sql(f"select 1+1;")
        self.partitions_by = ['site_name', 'date_type', 'date_info']
        self.date_info_tuple = "('2022-11-02')"
        self.date_info_tuple_last_5_day = "('2022-11-02')"
        self.reset_partitions(partitions_num=1)
        # self.date_info_tuple = ('2022-11-01', '2022-11-02', '2022-11-03', '2022-11-04', '2022-11-05', '2022-11-06')
        self.date_today = ''
        self.date_last_5_day_tuple = tuple()
        self.get_date_info_tuple()
        self.engine_pg14 = DBUtil.get_db_engine(db_type=DbTypes.postgresql_14.name, site_name=self.site_name)
        self.engine_mysql = DBUtil.get_db_engine(db_type=DbTypes.mysql.name, site_name=self.site_name)

    def truncate_or_update_table_syn(self):
        table = f"{self.site_name}_all_syn_st_month_{self.date_info.replace('-', '_')}"
        year, month = self.date_info.split("-")
        sql = f"select count(*) as st_count from {self.site_name}_brand_analytics_month_{year} where year={year} and month={int(month)} ;"
        df = pd.read_sql(sql, con=self.engine_mysql)
        print("sql:", sql, df.shape)
        if list(df.st_count)[0] >= 1_0000:
            # sql = f"select asin from {self.site_name}_all_syn_st_month_{year} where date_info='{self.date_info}'"
            sql = f"select asin from {table} where date_info='{self.date_info}';"
            print("sql:", sql, df.shape)
            pdf_asin = pd.read_sql(sql, con=self.engine_pg14)
            schema = StructType([
                StructField('asin', StringType(), True),
            ])
            df_asin = self.spark.createDataFrame(pdf_asin, schema=schema)
            # self.df_save = self.df_save.join(self.df_save, df_asin.asin == self.df_save.asin, "left_anti")
            df_save_alias = self.df_save.alias("df_save")
            df_asin_alias = df_asin.alias("df_asin")
            self.df_save = df_save_alias.join(df_asin_alias, df_asin_alias.asin == df_save_alias.asin, "left_anti")
            self.df_save.show(10, truncate=False)
            print(f"df_asin: {df_asin.count()}, self.df_save: {self.df_save.count()}")
        else:
            while True:
                try:
                    with self.engine_pg14.begin() as conn:
                        sql_truncate = f"truncate {table};"
                        print("月搜索词没有导入进来, 需要先清空表, sql_truncate:", sql_truncate)
                        conn.execute(sql_truncate)
                    break
                except Exception as e:
                    print(e, traceback.format_exc())
                    time.sleep(random.randint(3, 10))
                    self.engine_pg14 = DBUtil.get_db_engine(db_type=DbTypes.postgresql_14.name,
                                                            site_name=self.site_name)
                    continue

    def truncate_or_update_table_syn_old(self):
        table = f"{self.site_name}_all_syn_st_month_{self.date_info.replace('-', '_')}" if self.site_name == 'us' else f"{self.site_name}_all_syn_st_{self.date_info.replace('-', '_')}"
        if site_name == 'us':
            year, month = self.date_info.split("-")
            sql = f"select count(*) as st_count from {self.site_name}_brand_analytics_month_{year} where year={year} and month={int(month)} ;"
        # else:
        #     year, week = self.date_info.split("-")
        #     sql = f"select count(*) from {self.site_name}_brand_analytics_{year} where week={week};"
            df = pd.read_sql(sql, con=self.engine_mysql)
            print("sql:", sql, df.shape)
            if list(df.st_count)[0] >= 100_0000:
                sql = f"select asin from us_all_syn_st_month_{year} where date_info='{self.date_info}'"
                pdf_asin = pd.read_sql(sql, con=self.engine_pg14)
                schema = StructType([
                    StructField('asin', StringType(), True),
                ])
                df_asin = self.spark.createDataFrame(pdf_asin, schema=schema)
                # self.df_save = self.df_save.join(self.df_save, df_asin.asin == self.df_save.asin, "left_anti")
                df_save_alias = self.df_save.alias("df_save")
                df_asin_alias = df_asin.alias("df_asin")
                self.df_save = df_save_alias.join(df_asin_alias, df_asin_alias.asin == df_save_alias.asin, "left_anti")

                self.df_save.show(10, truncate=False)
                print(f"df_asin: {df_asin.count()}, self.df_save: {self.df_save.count()}")
            else:
                while True:
                    try:
                        with self.engine_pg14.begin() as conn:
                            sql_truncate = f"truncate {table};"
                            print("sql_truncate:", sql_truncate)
                            conn.execute(sql_truncate)
                        break
                    except Exception as e:
                        print(e, traceback.format_exc())
                        time.sleep(random.randint(3, 10))
                        self.engine_pg14 = DBUtil.get_db_engine(db_type=DbTypes.postgresql_14.name,
                                                                site_name=self.site_name)
                        continue
        else:
            while True:
                try:
                    with self.engine_pg14.begin() as conn:
                        sql_truncate = f"truncate {table};"
                        print("sql_truncate:", sql_truncate)
                        conn.execute(sql_truncate)
                    break
                except Exception as e:
                    print(e, traceback.format_exc())
                    time.sleep(random.randint(3, 10))
                    self.engine_pg14 = DBUtil.get_db_engine(db_type=DbTypes.postgresql_14.name, site_name=self.site_name)
                    continue

    def get_date_info_tuple(self):
        self.df_date = self.spark.sql(f"select * from dim_date_20_to_30;")
        df = self.df_date.toPandas()
        if self.date_type == 'day':
            df_today = df.loc[df.date == f'{self.date_info}']
            id_today = list(df_today.id)[0]
            id_last_5_day = id_today - 4
            print("id_today, id_last_5_day:", id_today, id_last_5_day)
            df_last_5_day = df.loc[(df.id < id_today) & (df.id >= id_last_5_day)]
            self.date_last_5_day_tuple = tuple(df_last_5_day.date)

    def read_data(self):
        # 测试月流程用
        # sql = f"select asin from us_all_syn_st_month_{2024} where date_info='{2023-12}' limit 100000"
        # print("sql===:", sql)
        # pdf_asin = pd.read_sql(sql, con=self.engine_pg14)
        # schema = StructType([
        #     StructField('asin', StringType(), True),
        # ])
        # df_asin = self.spark.createDataFrame(pdf_asin, schema=schema)
        # df_asin.show(10, truncate=False)

        if self.date_type == 'day':
            print("1.1 读取dim_st_asin_info表(当前日)")
            sql = f"select asin, site_name from dim_st_asin_info where site_name='{self.site_name}' and date_type='{self.date_type}' and date_info='{self.date_info}';"
            print("sql:", sql)
            self.df_st_asin_today = self.spark.sql(sqlQuery=sql).cache()
            self.df_st_asin_today.show(10, truncate=False)
            self.df_st_asin_today = self.df_st_asin_today.drop_duplicates(["asin"])
            print("self.df_st_asin_today:", self.df_st_asin_today.count())
            print("1.2 读取dim_st_asin_info表(当前日的前6天)")
            sql = f"select asin, 1 as asin_isin_flag from {self.db_save} where site_name='{self.site_name}' and date_type='{self.date_type}'  " \
                  f"and date_info in {self.date_last_5_day_tuple} and date_info >= '2022-11-02';"
            print("sql:", sql)
            self.df_st_asin_last_5_day = self.spark.sql(sqlQuery=sql).cache()
            self.df_st_asin_last_5_day.show(10, truncate=False)
            print("self.df_st_asin_last_5_day去重前:", self.df_st_asin_last_5_day.count())
            self.df_st_asin_last_5_day = self.df_st_asin_last_5_day.drop_duplicates(["asin"])
            print("self.df_st_asin_last_5_day去重后:", self.df_st_asin_last_5_day.count())
        else:
            sql = f"select asin, site_name from dim_st_asin_info where site_name='{self.site_name}' and date_type='{self.date_type}' and date_info='{self.date_info}';"
            print("sql:", sql)
            self.df_st_asin = self.spark.sql(sqlQuery=sql).cache()
            self.df_st_asin = self.df_st_asin.drop_duplicates(["asin"])
            print("self.df_st_asin.count:", self.df_st_asin.count())

        print("2. 读取dim_asin_variation_info表")
        sql = f"""select asin, 1 as asin_is_variation from dim_asin_variation_info where site_name="{self.site_name}";"""
        self.df_asin_variation = self.spark.sql(sqlQuery=sql).cache()
        self.df_asin_variation.show(10, truncate=False)
        self.df_asin_variation = self.df_asin_variation.drop_duplicates(["asin"])

        print("3. 读取dim_asin_stable_info表")
        sql = f"""select asin, asin_volume as volume, asin_weight_str as weight_str from dim_asin_stable_info where site_name="{self.site_name}";"""
        self.df_asin_stable = self.spark.sql(sqlQuery=sql).cache()
        self.df_asin_stable.show(10, truncate=False)
        self.df_asin_stable = self.df_asin_stable.drop_duplicates(["asin"])

    def handle_data(self):
        if self.date_type == 'day':
            if self.date_info >= '2022-11-02':
                self.df_st_asin_today = self.df_st_asin_today.join(
                    self.df_st_asin_last_5_day, on='asin', how='left'
                )
                print("self.df_st_asin_today合并:", self.df_st_asin_today.count())
                self.df_st_asin_today = self.df_st_asin_today.filter("asin_isin_flag is null")
            print("self.df_st_asin_today新出现:", self.df_st_asin_today.count())
            self.df_save = self.df_st_asin_today.join(
                self.df_asin_variation, on='asin', how='left'
            )
        else:
            self.df_save = self.df_st_asin.join(
                self.df_asin_variation, on='asin', how='left'
            ).join(
                self.df_asin_stable, on='asin', how='left'
            )

        self.df_save = self.df_save.drop("asin_isin_flag")
        self.handle_temp()
        self.truncate_or_update_table_syn()  # 清空表/更新表數據
        self.df_save = self.df_save.withColumn("site_name", F.lit(self.site_name))
        self.df_save = self.df_save.withColumn("date_type", F.lit(self.date_type))
        self.df_save = self.df_save.withColumn("date_info", F.lit(self.date_info))
        self.df_save = self.df_save.fillna({"asin_is_variation": 0})
        self.df_save.show(10, truncate=False)
        print("self.df_save.count:", self.df_save.count())
wangrui committed
220
        users = ["fangxingjun", "chenyuanjie", "pengyanbing"]
chenyuanjie committed
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
        title = f"dwd_asin_to_pg: {self.site_name}, {self.date_type}, {self.date_info}"
        content = f"整合asin完成--等待导出到pg提供爬虫使用--self.df_save.count: {self.df_save.count()}"
        CommonUtil().send_wx_msg(users=users, title=title, content=content)
        # quit()

    def handle_temp(self):
        if self.site_name == 'us' and self.date_type == 'week' and self.date_info == '2023-44':
            sql = f"select asin from dwd_asin_to_pg where site_name='{self.site_name}' and date_type='month' and date_info='2023-11';"
            print("sql:", sql)
            self.df_asin_month = self.spark.sql(sqlQuery=sql).cache()
            self.df_asin_month = self.df_asin_month.drop_duplicates(["asin"])

            self.df_save = self.df_save.withColumn("data_type", F.lit(100))
            # self.df_save = self.df_save.join(
            #     self.df_asin_month, on='asin'
            # )
            result_df = self.df_asin_month.join(self.df_save, self.df_asin_month.asin == self.df_save.asin, "left_anti")
            print("result_df.count:", result_df.count())

            # 确保两个 DataFrame 有相同的列
            columns1 = self.df_save.columns
            columns2 = result_df.columns
            print(f"columns1:{columns1}, columns2:{columns2}")

            # 为 df1 添加在 df2 中存在但 df1 中缺失的列
            for col in set(columns2) - set(columns1):
                self.df_save = self.df_save.withColumn(col, F.lit(None))

            # 为 df2 添加在 df1 中存在但 df2 中缺失的列
            for col in set(columns1) - set(columns2):
                result_df = result_df.withColumn(col, F.lit(None))
            # self.df_save = self.df_save.join(
            #     result_df
            # )
            print("self.df_save.count11:", self.df_save.count())

            self.df_save = self.df_save.unionByName(result_df)
            print("self.df_save.count22:", self.df_save.count())
            self.site_name = "us"
            self.date_type = "month"
            self.date_info = "2023-11"
        else:
            self.df_save = self.df_save.withColumn("data_type", F.lit(1))


if __name__ == "__main__":
    site_name = sys.argv[1]  # 参数1:站点
    date_type = sys.argv[2]  # 参数2:类型:week/4_week/month/quarter
    date_info = sys.argv[3]  # 参数3:年-周/年-月/年-季, 比如: 2022-1
    handle_obj = DwdAsinToPg(site_name=site_name, date_type=date_type, date_info=date_info)
    handle_obj.run()