dim_asin_title_info.py 6.83 KB
Newer Older
chenyuanjie committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
import os
import sys

os.environ["PYARROW_IGNORE_TIMEZONE"] = "1"
sys.path.append(os.path.dirname(sys.path[0]))  # 上级目录
from utils.templates import Templates
# from ..utils.templates import Templates
from pyspark.sql.types import StringType
# 分组排序的udf窗口函数
from pyspark.sql.window import Window
from pyspark.sql import functions as F


class DimAsinTitleInfo(Templates):

    def __init__(self, site_name='us'):
        super().__init__()
        self.site_name = site_name
        self.db_save_vertical = f'dim_asin_title_info_vertical'
        self.db_save_wide = f'dim_asin_title_info_wide'
        self.spark = self.create_spark_object(app_name=f"{self.db_save_vertical}: {self.site_name}, {self.date_type}, {self.date_info}")
        self.df_theme = self.spark.sql(f"select 1+1;")
        self.df_asin_title = self.spark.sql(f"select 1+1;")
        self.df_save_vertical = self.spark.sql(f"select 1+1;")  # 竖表
        self.df_save_wide = self.spark.sql(f"select 1+1;")  # 宽表
        # 注册自定义函数 (UDF)
        self.u_theme_pattern = F.udf(self.udf_theme_pattern, StringType())
        # 其他变量
        # self.pattern = str()  # 正则匹配
        self.theme_list_str = str()  # 正则匹配
        # 分区参数
        self.partitions_by = ['site_name']
        self.partitions_num = 100

    @staticmethod
    def udf_theme_pattern(title, theme_list_str):
        found_themes = [theme.strip() for theme in eval(theme_list_str) if theme in title]
        if found_themes:
            return ','.join(set(found_themes))
        else:
            return None

    def read_data(self):
        sql = f"select id as theme_id, theme_type_en, theme_en, theme_en_lower, theme_ch from ods_theme where site_name='{self.site_name}'"
        print("sql:", sql)
        self.df_theme = self.spark.sql(sql).cache()
        self.df_theme.show(10, truncate=False)
        # sql = f"-- select asin, title as asin_volume, date_info from ods_asin_detail where site_name='{self.site_name}' and date_type='week'"  # and date_info>='2023-15'
        sql = f"select asin, title as asin_title, date_info, site_name from ods_asin_detail where site_name='{self.site_name}' and date_type='week' "  # and date_info>='2023-25' limit 10000
        print("sql:", sql)
        self.df_asin_title = self.spark.sql(sqlQuery=sql).cache()
        self.df_asin_title.show(10, truncate=False)

    def handle_data(self):
        self.handle_filter_dirty_data()
        self.handle_theme()

    def handle_filter_dirty_data(self):
        """
        过滤脏数据+保留最新的title
        """
        # 小写
        self.df_asin_title = self.df_asin_title.withColumn("asin_title_lower", F.lower(self.df_asin_title["asin_title"]))
        # 过滤空值
        self.df_asin_title = self.df_asin_title.filter("asin_title_lower is not null")
        # 过滤null和none字符串
        self.df_asin_title = self.df_asin_title.filter("asin_title_lower not in ('none', 'null', 'nan')")
        # 取最新的date_info对应的title
        window = Window.partitionBy('asin').orderBy(F.desc('date_info'))  # 按照 date_info 列进行分区,并按照 date 列进行排序
        self.df_asin_title = self.df_asin_title.withColumn('row_number', F.row_number().over(window))  # 使用窗口函数为每个分区的行编号
        self.df_asin_title = self.df_asin_title.filter(self.df_asin_title.row_number == 1).drop('row_number')  # 只保留每个分区中 row_number 最大的行,并删除 row_number 列

    def handle_theme(self):
        pdf_theme = self.df_theme.toPandas()
        theme_list = list(set(pdf_theme.theme_en_lower))
        self.theme_list_str = str([f" {theme} " for theme in theme_list])
        print("self.theme_list_str:", self.theme_list_str)
        # 匹配宽表时用到
        df_asin_title = self.df_asin_title.cache()  # 后面用作匹配asin_title

        self.df_asin_title = self.df_asin_title.withColumn("asin_title_lower", F.concat(F.lit(" "), "asin_title_lower", F.lit(" ")))  # 标题两头加空字符串用来匹配整个词
        self.df_asin_title = self.df_asin_title.withColumn("theme_en_lower", self.u_theme_pattern('asin_title_lower', F.lit(self.theme_list_str)))
        # 将列拆分为数组多列
        self.df_asin_title = self.df_asin_title.withColumn("theme_en_lower", F.split(self.df_asin_title["theme_en_lower"], ","))
        # 将数组合并到多行
        self.df_asin_title = self.df_asin_title.withColumn("theme_en_lower", F.explode(self.df_asin_title["theme_en_lower"]))
        self.df_asin_title = self.df_asin_title.join(
            self.df_theme, on=['theme_en_lower'], how='left'  # 改成inner, 这样避免正则匹配结果不准
        )
        # 1. 竖表
        self.df_save_vertical = self.df_asin_title.cache()
        print(self.df_save_vertical.columns)
        self.df_save_vertical.show(30, truncate=False)
        # self.df_save_vertical.filter("theme_en_lower is not null").show(30, truncate=False)

        # 2. 宽表
        self.df_asin_title = self.df_asin_title.drop_duplicates(['asin', 'theme_type_en', 'theme_ch'])
        self.df_asin_title = self.df_asin_title.withColumn("theme_type_en_counts", F.concat("theme_type_en", F.lit("_counts")))
        self.df_asin_title = self.df_asin_title.withColumn("theme_type_en_ids", F.concat("theme_type_en", F.lit("_ids")))
        # self.df_asin_title.filter('theme_type_en_counts is null').show(20, truncate=False)   # 没有记录
        self.df_asin_title = self.df_asin_title.filter('theme_type_en_counts is not null')
        pivot_df1 = self.df_asin_title.groupBy("asin").pivot("theme_type_en_counts").agg(
            F.expr("IFNULL(count(*), 0) AS value"))
        pivot_df1 = pivot_df1.na.fill(0)
        pivot_df2 = self.df_asin_title.groupBy("asin").pivot("theme_type_en_ids").agg(
            F.concat_ws(",", F.collect_list("theme_id")))
        pivot_df1.show(30, truncate=False)
        pivot_df2.show(30, truncate=False)
        self.df_save_wide = df_asin_title.join(
            pivot_df1, on='asin', how='left'
        ).join(
            pivot_df2, on='asin', how='left'
        )
        # self.df_save_wide.show(30, truncate=False)
        print(self.df_save_wide.columns)

    def save_data(self):
        self.reset_partitions(partitions_num=100)
        self.save_data_common(
            df_save=self.df_save_vertical,
            db_save=self.db_save_vertical,
            partitions_num=self.partitions_num,
            partitions_by=self.partitions_by
        )
        self.reset_partitions(partitions_num=100)
        self.save_data_common(
            df_save=self.df_save_wide,
            db_save=self.db_save_wide,
            partitions_num=self.partitions_num,
            partitions_by=self.partitions_by
        )


if __name__ == '__main__':
    site_name = sys.argv[1]  # 参数1:站点
    handle_obj = DimAsinTitleInfo(site_name=site_name)
    handle_obj.run()