dim_cal_asin_history_detail.py 20.4 KB
Newer Older
chenyuanjie committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
import os
import sys

from pyspark.sql.types import DoubleType, StringType

sys.path.append(os.path.dirname(sys.path[0]))

from utils.hdfs_utils import HdfsUtils
from utils.spark_util import SparkUtil
from utils.common_util import CommonUtil, DateTypes
# 上级目录
from pyspark.sql.window import Window
from pyspark.sql import functions as F

from yswg_utils.common_udf import parse_weight_str
from yswg_utils.common_udf import udf_handle_string_null_value
from yswg_utils.common_df import get_node_first_id_df
from utils.redis_utils import RedisUtils


class DimCalAsinDetail(object):

    def __init__(self, site_name, date_type, date_info):
        self.site_name = site_name
        self.date_type = date_type
        self.date_info = date_info

        # 初始化参数
        self.partitions_by = ['site_name']
        self.partitions_num = CommonUtil.reset_partitions(self.site_name, partitions_num=80)
        app_name = f"{self.__class__.__name__}:{self.site_name}"
        self.spark = SparkUtil.get_spark_session(app_name)
        self.hive_table = f'dim_cal_asin_history_detail'
        self.partition_dict = {
            "site_name": site_name
        }
        self.udf_parse_weight_str_reg = self.spark.udf.register("udf_parse_weight_str_reg", self.udf_parse_weight_str, DoubleType())
        self.udf_handle_null_value = self.spark.udf.register("udf_handle_null_value", udf_handle_string_null_value, StringType())

    @staticmethod
    def udf_parse_weight_str(weight_str: str, site_name: str):
        """
        解析重量
        :param weight_str:
        :param site_name:
        :return:
        """
        if weight_str is None:
            return None
        weight_val, unit = parse_weight_str(weight_str, site_name)
        if weight_val != 'none' and weight_val is not None:
            return float(weight_val)

    def run(self):

        print(f"读取数据中.....")
        if self.date_type == 'all':
            # 读取dim_asin_detail
            sql = f"""select 
                              asin, 
                              asin_img_url, 
                              asin_title,
                              asin_title_len,
                              asin_category_desc,
                              asin_rank,
                              asin_volume,
                              asin_weight,
                              asin_color,
                              asin_size,
                              asin_style,
                              asin_price,
                              asin_rating,
                              asin_total_comments,
                              asin_material,
                              asin_brand_name,
                              asin_page_inventory,
                              asin_buy_box_seller_type,
                              asin_launch_time,
                              asin_img_num,
                              asin_img_type,
                              asin_is_sale,
                              bsr_cate_1_id,
                              bsr_cate_current_id,
                              asin_is_amazon,
                              asin_is_FBA,
                              asin_is_FBM,
                              asin_is_other,
                              udf_handle_null_value(node_id) as node_id,
                              asin_is_picture,
                              asin_is_video,
                              asin_is_aadd, 
                              date_format(created_time,'{CommonUtil._date_time_format}') as asin_crawl_date
                               from dim_asin_detail 
                              where site_name='{self.site_name}' 
                              and date_type='month' ;
                                """
            self.date_type = 'day_all'
        elif self.date_type in (DateTypes.week.name, DateTypes.month.name, DateTypes.month_week.name):
            sql = f"""select 
                              asin, 
                              asin_img_url, 
                              asin_title,
                              asin_title_len,
                              asin_category_desc,
                              asin_rank,
                              asin_volume,
                              asin_weight,
                              asin_color,
                              asin_size,
                              asin_style,
                              asin_price,
                              asin_rating,
                              asin_total_comments,asin_material,
                              asin_brand_name,
                              asin_page_inventory,
                              asin_buy_box_seller_type,
                              asin_launch_time,
                              asin_img_num,
                              asin_img_type,
                              asin_is_sale,
                              bsr_cate_1_id,
                              bsr_cate_current_id,
                              asin_is_amazon,
                              asin_is_FBA,
                              asin_is_FBM,
                              asin_is_other,
                              udf_handle_null_value(node_id) as node_id,
                              asin_is_picture,
                              asin_is_video,
                              asin_is_aadd, 
                              date_format(created_time,'{CommonUtil._date_time_format}') as asin_crawl_date
                               from dim_asin_detail 
                              where site_name='{self.site_name}' 
                              and date_type='{self.date_type}' 
                              and date_info = '{self.date_info}';
                              """
        else:
            sql = f"""
                        select 
                              asin, 
                              asin_img_url, 
                              asin_title,
                              asin_title_len,
                              asin_category_desc,
                              asin_rank,
                              asin_volume,
                              asin_weight,
                              asin_color,
                              asin_size,
                              asin_style,
                              asin_price,
                              asin_rating,
                              asin_total_comments,asin_material,
                              asin_brand_name,
                              asin_page_inventory,
                              asin_buy_box_seller_type,
                              asin_launch_time,
                              asin_img_num,
                              asin_img_type,
                              asin_is_sale,
                              bsr_cate_1_id,
                              bsr_cate_current_id,
                              asin_is_amazon,
                              asin_is_FBA,
                              asin_is_FBM,
                              asin_is_other,
                              node_id,
                              asin_is_picture,
                              asin_is_video,
                              asin_is_aadd, 
                              date_format(created_time,'{CommonUtil._date_time_format}') as asin_crawl_date
                               from dim_asin_detail 
                              where site_name='{self.site_name}' 
                              limit 0
            """

        print("======================整合搜索词 day asin 中... sql如下======================")
        print(sql)
        df_asin_detail = self.spark.sql(sqlQuery=sql)
        self_asin_sql = None
        if self.date_type == DateTypes.day.name:
            self_asin_sql = f"""
select asin                                  as asin,
	   img_url                               as asin_img_url,
	   title                                 as asin_title,
	   title_len                             as asin_title_len,
	   category                              as asin_category_desc,
	   rank                                  as asin_rank,
	   volume                                as asin_volume,
	   udf_parse_weight_str_reg(weight_str,'{self.site_name}')  as asin_weight,
	   null                                  as asin_color,
	   null                                  as asin_size,
	   null                                  as asin_style,
	   price                                 as asin_price,
	   rating                                as asin_rating,
	   total_comments                        as asin_total_comments,
	   material                              as asin_material,
	   brand                                 as asin_brand_name,
	   page_inventory                        as asin_page_inventory,
	   buy_box_seller_type                   as asin_buy_box_seller_type,
	   launch_time                           as asin_launch_time,
	   img_num                               as asin_img_num,
	   img_type                              as asin_img_type,
	   null                                  as asin_is_sale,
	   null                                  as bsr_cate_1_id,
	   null                                  as bsr_cate_current_id,
	   if(buy_box_seller_type == 1, 1, 0)    as asin_is_amazon,
	   if(buy_box_seller_type == 2, 1, 0)    as asin_is_FBA,
	   if(buy_box_seller_type == 3, 1, 0)    as asin_is_FBM,
	   if(buy_box_seller_type == 4, 1, 0)    as asin_is_other,
	   node_id,
	   if(locate(1, img_type) > 0, 1, 0)     as asin_is_picture,
	   if(locate(2, img_type) > 0, 1, 0)     as asin_is_video,
	   if(locate(3, img_type) > 0, 1, 0)     as asin_is_aadd,
	   date_format(created_at, '{CommonUtil._date_time_format}') as asin_crawl_date
from ods_self_asin_detail
where site_name = '{self.site_name}'
  and date_type = '{self.date_type}'
  and date_info = '{self.date_info}';
            """
        elif self.date_type == "day_all":
            self_asin_sql = f"""
            select asin                                         as asin,
	   img_url                                                  as asin_img_url,
	   title                                                    as asin_title,
	   title_len                                                as asin_title_len,
	   category                                                 as asin_category_desc,
	   rank                                                     as asin_rank,
	   volume                                                   as asin_volume,
	   udf_parse_weight_str_reg(weight_str, '{self.site_name}') as asin_weight,
	   null                                                     as asin_color,
	   null                                                     as asin_size,
	   null                                                     as asin_style,
	   price                                                    as asin_price,
	   rating                                                   as asin_rating,
	   total_comments                                           as asin_total_comments,
	   material                                                 as asin_material,
	   brand                                                    as asin_brand_name,
	   page_inventory                                           as asin_page_inventory,
	   buy_box_seller_type                                      as asin_buy_box_seller_type,
	   launch_time                                              as asin_launch_time,
	   img_num                                                  as asin_img_num,
	   img_type                                                 as asin_img_type,
	   null                                                     as asin_is_sale,
	   null                                                     as bsr_cate_1_id,
	   null                                                     as bsr_cate_current_id,
	   if(buy_box_seller_type == 1, 1, 0)                       as asin_is_amazon,
	   if(buy_box_seller_type == 2, 1, 0)                       as asin_is_FBA,
	   if(buy_box_seller_type == 3, 1, 0)                       as asin_is_FBM,
	   if(buy_box_seller_type == 4, 1, 0)                       as asin_is_other,
	   if(locate(1, img_type) > 0, 1, 0)                        as asin_is_picture,
	   node_id,
	   if(locate(2, img_type) > 0, 1, 0)                        as asin_is_video,
	   if(locate(3, img_type) > 0, 1, 0)                        as asin_is_aadd,
	   date_format(created_at, '{CommonUtil._date_time_format}')           as asin_crawl_date
from (
		 select *,
				row_number() over (partition by asin order by date_info desc) as row_number
		 from ods_self_asin_detail
		 where site_name = '{self.site_name}'
		   and date_type = '{DateTypes.day.name}'
	 )
where row_number = 1;
            """

        if self_asin_sql is not None:
            print("======================整合day asin 中sql如下======================")
            print(self_asin_sql)
            df_self_asin_detail = self.spark.sql(sqlQuery=self_asin_sql)
            # 合并要更新的数据
            df_asin_detail = df_asin_detail.unionByName(df_self_asin_detail, allowMissingColumns=False)
            pass

        # 判断是否有数据需要整合
        if df_asin_detail.first() == None:
            print("============================无数据跳过===================================")
            return

        print("======================获取dim_bsr_category_tree first_id======================")
        df_node_cate = get_node_first_id_df(self.site_name, self.spark)
        df_asin_detail = df_asin_detail.join(
            df_node_cate, on=['node_id'], how='left'
        )

        # 读取dim_cal_asin_history_detail
        sql = f"""select 
              asin, 
              asin_img_url, 
              asin_title,
              asin_title_len,
              asin_category_desc,
              asin_rank,
              asin_volume,
              asin_weight,
              asin_color,
              asin_size,
              asin_style,
              asin_price,
              asin_rating,
              asin_total_comments,
              asin_material,
              asin_brand_name,
              asin_page_inventory,
              asin_buy_box_seller_type,
              asin_launch_time,
              asin_img_num,
              asin_img_type,
              asin_is_sale,
              bsr_cate_1_id,
              bsr_cate_current_id,
              asin_is_amazon,
              asin_is_FBA,
              asin_is_FBM,
              asin_is_other,
              asin_is_picture,
              asin_is_video,
              asin_is_aadd, 
              asin_crawl_date,
              node_id,
              category_first_id
               from dim_cal_asin_history_detail 
               where site_name='{self.site_name}' ;
              """
        df_asin_cal_detail = self.spark.sql(sqlQuery=sql)
        print("======================查询sql如下======================")
        print(sql)
        df_asin_detail = self.handle_df_duplicated(df_asin_detail, df_asin_cal_detail)
        df_save = self.handle_column(df_asin_detail).repartition(self.partitions_num)
        # print("self.df_save", df_save.show(10, truncate=False))
        # quit()
        CommonUtil.save_or_update_table(spark_session=self.spark, hive_tb_name=self.hive_table,
                                        partition_dict=self.partition_dict, df_save=df_save, drop_exist_tmp_flag=False)
        print("success")

    # 根据asin去重,取dt最大的asin保留
    def handle_df_duplicated(self, df_asin_detail, df_asin_cal_detail):
        print("针对asin进行数据去重...")
        # 将新老数据进行合并
        # df_asin_detail = df_asin_detail.union(df_asin_cal_detail)
        df_asin_detail = df_asin_detail.unionByName(df_asin_cal_detail, allowMissingColumns=True)

        # asin窗口内排序,按照dt降序
        window = Window.partitionBy(['asin']).orderBy(
            df_asin_detail.asin_crawl_date.desc_nulls_last()
        )
        df_asin_detail = df_asin_detail.withColumn("sort_top", F.row_number().over(window=window))
        # 取按asin分组的组内第一条,就是去重后的最新asin_detail
        df_asin_detail = df_asin_detail.filter("sort_top=1")

        # 去除掉排序字段
        df_asin_detail = df_asin_detail.drop("asin_dt_top", "dt")

        return df_asin_detail

    def handle_column(self, df_asin_detail):

        df_save = df_asin_detail.select("asin",
                                        "asin_title",
                                        F.col("asin_title_len").cast('int').alias('asin_title_len'),
                                        "asin_category_desc",
                                        F.col("asin_rank").cast('int').alias('asin_rank'),
                                        self.udf_handle_null_value("asin_volume").alias("asin_volume"),
                                        F.col("asin_weight").cast('double').alias('asin_weight'),
                                        self.udf_handle_null_value("asin_color").alias("asin_color"),
                                        self.udf_handle_null_value("asin_size").alias("asin_size"),
                                        self.udf_handle_null_value("asin_style").alias("asin_style"),
                                        "asin_price",
                                        "asin_rating",
                                        F.col("asin_total_comments").cast('int').alias('asin_total_comments'),
                                        self.udf_handle_null_value("asin_material").alias("asin_material"),
                                        self.udf_handle_null_value("asin_brand_name").alias("asin_brand_name"),
                                        "bsr_cate_1_id",
                                        "bsr_cate_current_id",
                                        F.col("asin_page_inventory").cast('int').alias('asin_page_inventory'),
                                        F.col("asin_buy_box_seller_type").cast('int').alias('asin_buy_box_seller_type'),
                                        "asin_is_amazon",
                                        "asin_is_fba",
                                        "asin_is_fbm",
                                        "asin_is_other",
                                        F.col("asin_is_sale").cast('int').alias('asin_is_sale'),
                                        "asin_launch_time",
                                        F.col("asin_img_num").cast('int').alias('asin_img_num'),
                                        "asin_img_type",
                                        "asin_is_picture",
                                        F.col("asin_is_video").cast('int').alias('asin_is_video'),
                                        F.col("asin_is_aadd").cast('int').alias('asin_is_aadd'),
                                        self.udf_handle_null_value("asin_img_url").alias("asin_img_url"),
                                        "asin_crawl_date",
                                        "node_id",
                                        "category_first_id"
                                        )

        # 预留字段补全
        df_save = df_save.withColumn("re_string_field1", F.lit(None))
        df_save = df_save.withColumn("re_string_field2", F.lit(None))
        df_save = df_save.withColumn("re_string_field3", F.lit(None))
        df_save = df_save.withColumn("re_int_field1", F.lit(None))
        df_save = df_save.withColumn("re_int_field2", F.lit(None))
        df_save = df_save.withColumn("re_int_field3", F.lit(None))

        # 分区字段补全
        df_save = df_save.withColumn("site_name", F.lit(self.site_name))
        return df_save


if __name__ == '__main__':
    site_name = CommonUtil.get_sys_arg(1, None)  # 参数1:站点
    date_type = CommonUtil.get_sys_arg(2, None)  # 参数2:类型:week/4_week/month/quarter/day
    date_info = CommonUtil.get_sys_arg(3, None)  # 参数3:年-周/年-月/年-季/年-月-日, 比如: 2022-1
    lock_name = "dim_cal_asin_history_detail"
    if date_type == "all":
        # 如果执行数据为all的情况,非自然解锁情况,则需锁设定该表90分钟
        lock_flag = RedisUtils.acquire_redis_lock(lock_name, expire_time=90 * 60, retry_flag=True, retry_time=10 * 60)
    else:
        lock_flag = RedisUtils.acquire_redis_lock(lock_name, expire_time=30 * 60, retry_flag=True, retry_time=10 * 60)
    if lock_flag:
        try:
            obj = DimCalAsinDetail(site_name, date_type, date_info)
            obj.run()
        finally:
            # 执行完成后释放锁
            RedisUtils.release_redis_lock(lock_name)