from vgg_model import VGGNet from sklearn.metrics.pairwise import cosine_similarity import numpy as np vgg_model = VGGNet() def compare_pictures_sim(p1, p2): f1 = vgg_model.vgg_extract_feat(p1) f2 = vgg_model.vgg_extract_feat(p2) print(f"f1: {f1}, \nf2: {f2}") # 将特征向量从列表转换为 NumPy 数组 f1 = np.array(f1) f2 = np.array(f2) print(f"f1: {f1}, \nf2: {f2}") # 计算余弦相似度 f1 = f1.reshape(1, -1) f2 = f2.reshape(1, -1) similarity = cosine_similarity(f1, f2) print(f"余弦相似度: {similarity[0][0]}") p1 = rf"F:\db_data\WXWork\1688850558010973\Cache\Image\2024-05/企业微信截图_17169558074455.png" p2 = rf"F:\db_data\WXWork\1688850558010973\Cache\Image\2024-05/企业微信截图_17169558138503.png" p1 = rf"F:\db_data\WXWork\1688850558010973\Cache\Image\2024-05/企业微信截图_17169558246328.png" p2 = rf"F:\db_data\WXWork\1688850558010973\Cache\Image\2024-05/企业微信截图_17169558377464.png" compare_pictures_sim(p1, p2)