dwd_asin_and_st_counts.py 10.2 KB
Newer Older
chenyuanjie committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
import os
import sys

from pyspark.storagelevel import StorageLevel
sys.path.append(os.path.dirname(sys.path[0]))  # 上级目录
from utils.templates import Templates
# from ..utils.templates import Templates
from pyspark.sql.types import StringType
# 分组排序的udf窗口函数
from pyspark.sql.window import Window
from pyspark.sql import functions as F


class DwdAsinAndStCounts(Templates):

    def __init__(self, site_name="us", date_type="week", date_info="2022-1"):
        super().__init__()
        self.site_name = site_name
        self.date_type = date_type
        self.date_info = date_info
        self.db_save_asin = f"dwd_asin_counts"
        self.db_save_st = f"dwd_st_counts"
        self.spark = self.create_spark_object(app_name=f"{self.db_save_asin}, {self.db_save_st}: {self.site_name}, {self.date_type}, {self.date_info}")
        self.df_date = self.get_year_week_tuple()
        self.df_save_asin = self.spark.sql(f"select 1+1;")
        self.df_save_st = self.spark.sql(f"select 1+1;")
        self.df_save_asin_std = self.spark.sql(f"select * from {self.db_save_asin} limit 0;")
        self.df_save_st_std = self.spark.sql(f"select * from {self.db_save_st} limit 0;")
        self.df_st_asin = self.spark.sql(f"select 1+1;")
        self.df_st_ao_val = self.spark.sql(f"select 1+1;")
        self.partitions_by = ['site_name', 'date_type', 'date_info']
        self.u_ao_val_rate = self.spark.udf.register("u_ao_val_rate", self.udf_ao_val_rate, StringType())

    @staticmethod
    def udf_ao_val_rate(st_ao_rank, st2_counts):
        if st_ao_rank < st2_counts / 100 * 1:
            return "top_1"
        elif st_ao_rank < st2_counts / 100 * 2:
            return "top_2"
        elif st_ao_rank < st2_counts / 100 * 3:
            return "top_3"
        elif st_ao_rank < st2_counts / 100 * 4:
            return "top_4"
        elif st_ao_rank < st2_counts / 100 * 5:
            return "top_5"
        elif st_ao_rank < st2_counts / 100 * 10:
            return "top_6~10"
        elif st_ao_rank < st2_counts / 100 * 20:
            return "top_11~20"
        elif st_ao_rank < st2_counts / 100 * 30:
            return "top_21~30"
        elif st_ao_rank < st2_counts / 100 * 40:
            return "top_31~40"
        elif st_ao_rank < st2_counts / 100 * 50:
            return "top_41~50"
        elif st_ao_rank < st2_counts / 100 * 60:
            return "top_51~60"
        elif st_ao_rank < st2_counts / 100 * 70:
            return "top_61~70"
        elif st_ao_rank < st2_counts / 100 * 80:
            return "top_71~80"
        elif st_ao_rank < st2_counts / 100 * 90:
            return "top_81~90"
        elif st_ao_rank <= st2_counts / 100 * 100:
            return "top_91~100"
        else:
            return "top_xxx"

    def read_data(self):
        print("1. 读取dim_st_asin_info表")
        sql = f"select * from dim_st_asin_info where site_name='{self.site_name}' and date_type='week' and date_info in {self.year_week_tuple};"""
        print("sql:", sql)
        self.df_st_asin = self.spark.sql(sqlQuery=sql).cache()
        self.df_st_asin.show(10, truncate=False)
        self.df_st_asin = self.df_st_asin.drop_duplicates(["asin", "search_term", "data_type"])

    def handle_data(self):
        self.df_save_asin = self.handle_data_counts(cal_type="asin")
        self.df_save_st = self.handle_data_counts(cal_type="st")
        self.handle_ao_val()  # 计算asin_ao_val和st_ao_val
        self.df_save_asin = self.df_save_asin.withColumn("date_type", F.lit(self.date_type))
        self.df_save_asin = self.df_save_asin.withColumn("date_info", F.lit(self.date_info))
        self.df_save_st = self.df_save_st.withColumn("date_type", F.lit(self.date_type))
        self.df_save_st = self.df_save_st.withColumn("date_info", F.lit(self.date_info))
        # self.df_save_asin.show(10, truncate=False)
        # self.df_save_st.show(10, truncate=False)
        # quit()

    def handle_data_counts(self, cal_type="asin"):
        print(f"2. 计算{cal_type}_counts")
        cal_type_complete = "search_term" if cal_type == "st" else cal_type
        self.df_st_asin = self.df_st_asin.withColumn(
            f"{cal_type}_data_type",
            F.concat(F.lit(f"{cal_type}_"), self.df_st_asin.data_type, F.lit(f"_counts"))
        )
        df = self.df_st_asin.groupby([f'{cal_type_complete}']).\
            pivot(f"{cal_type}_data_type").count()
        if cal_type == "asin":
            df = df.unionByName(self.df_save_asin_std, allowMissingColumns=True)
        else:
            self.df_save_st_std = self.df_save_st_std.drop("st_ao_val")
            df = df.unionByName(self.df_save_st_std, allowMissingColumns=True)

        df = df.fillna(0)
        # df.show(10, truncate=False)
        df = df.withColumn(
            f"{cal_type}_sb_counts",
            df[f"{cal_type}_sb1_counts"] + df[f"{cal_type}_sb2_counts"] + df[f"{cal_type}_sb3_counts"]
        )
        df = df.withColumn(
            f"{cal_type}_adv_counts",
            df[f"{cal_type}_sb_counts"] + df[f"{cal_type}_sp_counts"]
        )
        df = df.withColumn(f"site_name", F.lit(self.site_name))
        # df.show(10, truncate=False)
        return df

    def handle_ao_val(self):
        print("3. 计算asin_ao_val和st_ao_val")
        print("3.1 计算asin_ao_val")
        self.df_save_asin = self.df_save_asin.withColumn("asin_ao_val", self.df_save_asin.asin_adv_counts / self.df_save_asin.asin_zr_counts)
        self.df_save_asin = self.df_save_asin.fillna({"asin_ao_val": 0})
        # 选择最新一周关键词对应的asin,根据zr类型的page_rank计算ao_val(仔细考虑之后,直接去重即可)
        print("3.2 计算st_ao_val")
        # df_asin_ao_val = self.df_save_asin.select("asin", "asin_ao_val")
        # self.df_st_ao_val = self.df_st_asin. \
        #     filter("data_type='zr' and page_rank<=20"). \
        #     drop_duplicates(["search_term", "asin"])
        # self.df_st_ao_val = self.df_st_ao_val.join(df_asin_ao_val, on='asin', how='left')
        # window = Window.partitionBy(['search_term']). \
        #     orderBy(self.df_st_ao_val.asin_ao_val.desc())
        # self.df_st_ao_val = self.df_st_ao_val.withColumn("st_ao_rank", F.row_number().over(window))
        # # self.df_st_ao_val.show(50, truncate=False)
        # df_ao_val1 = self.df_st_ao_val.filter("st_ao_rank>3").groupby(['search_term']).agg({"asin_ao_val": "mean"})
        # df_ao_val1 = df_ao_val1.withColumnRenamed("avg(asin_ao_val)", "st_ao_val")
        # # df_ao_val1.show(10, truncate=False)
        # df_ao_val2 = self.df_st_ao_val.join(df_ao_val1.filter("st_ao_val=0"), on='search_term', how='inner'). \
        #     groupby(['search_term']).agg({"asin_ao_val": "mean"})
        # # df_ao_val2.show(10, truncate=False)
        # df_ao_val2 = df_ao_val2.withColumnRenamed("avg(asin_ao_val)", "st_ao_val")
        # # df_ao_val2.show(10, truncate=False)
        # df_ao_val = df_ao_val1.filter("st_ao_val>0").unionByName(df_ao_val2, allowMissingColumns=True)
        # # df_ao_val.show(10, truncate=False)
        # self.df_save_st = self.df_save_st.join(df_ao_val, on='search_term', how='left')

        # ao_val计算方式调整:取均值
        df_asin_ao = self.df_save_asin.select("asin", "asin_ao_val")
        df_st_asin = self.df_st_asin.drop_duplicates(["search_term", "asin"]).cache()
        df_st_asin = df_st_asin.join(
            df_asin_ao, on='asin', how='left'
        )
        df_st_ao = df_st_asin.groupby(['search_term']).agg(F.avg('asin_ao_val').alias("st_ao_val"))
        self.df_save_st = self.df_save_st.join(
            df_st_ao, on='search_term', how='left'
        )

        # # ao_val计算方式调整:取均值
        # df_asin_ao_val = self.df_save_asin.select("asin", "asin_ao_val")
        # self.df_st_ao_val = self.df_st_asin. \
        #     filter("data_type='zr'"). \
        #     drop_duplicates(["search_term", "asin"])
        # self.df_st_ao_val = self.df_st_ao_val.join(df_asin_ao_val, on='asin', how='left')
        # # self.df_st_ao_val.filter("search_term='agujas dermapen 36 puntas'").show(100)
        # df_ao_val = self.df_st_ao_val.groupby(['search_term']).agg({"asin_ao_val": "mean"})
        # df_ao_val = df_ao_val.withColumnRenamed("avg(asin_ao_val)", "st_ao_val")
        # self.df_save_st = self.df_save_st.join(df_ao_val, on='search_term', how='left')


        df_save_st1 = self.df_save_st.filter("st_ao_val=0")
        df_save_st1 = df_save_st1.withColumn("st_ao_val_rank", F.lit(0))
        df_save_st1 = df_save_st1.withColumn("st_ao_val_rate", F.lit("top_0"))
        df_save_st2 = self.df_save_st.filter("st_ao_val>0")
        window = Window.orderBy(df_save_st2.st_ao_val.asc())
        df_save_st2 = df_save_st2.withColumn("st_ao_val_rank", F.row_number().over(window))
        # df_save_st2.filter("st_ao_val_rank>10000").show(100, truncate=False)
        # st2_counts = df_save_st2.count()
        # df_save_st2 = df_save_st2.withColumn("st2_counts", F.lit(st2_counts))
        df_save_st2 = df_save_st2.withColumn(
            "st_ao_val_rate",
            self.u_ao_val_rate(
                "st_ao_val_rank", F.lit(df_save_st2.count())
            )
        )
        # df_save_st2.show(20, truncate=False)
        # df_save_st2.filter("st_ao_val_rate='top_xxx'").show(20, truncate=False)
        # df_save_st2.groupby(['st_ao_val_rate']).count().show(20, truncate=False)
        self.df_save_st = df_save_st1.unionByName(df_save_st2, allowMissingColumns=True)

    def save_data(self):
        self.reset_partitions(partitions_num=5)
        self.save_data_common(
            df_save=self.df_save_asin,
            db_save=self.db_save_asin,
            partitions_num=self.partitions_num,
            partitions_by=self.partitions_by
        )
        self.reset_partitions(partitions_num=1)
        self.save_data_common(
            df_save=self.df_save_st,
            db_save=self.db_save_st,
            partitions_num=self.partitions_num,
            partitions_by=self.partitions_by
        )


if __name__ == "__main__":
    site_name = sys.argv[1]  # 参数1:站点
    date_type = sys.argv[2]  # 参数2:类型:week/4_week/month/quarter
    date_info = sys.argv[3]  # 参数3:年-周/年-月/年-季, 比如: 2022-1
    handle_obj = DwdAsinAndStCounts(site_name=site_name, date_type=date_type, date_info=date_info)
    handle_obj.run()