dwt_nsr_asin_detail.py 13.1 KB
Newer Older
chenyuanjie committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
import os
import sys

sys.path.append(os.path.dirname(sys.path[0]))
from utils.hdfs_utils import HdfsUtils
from pyspark.sql import functions as F
from utils.common_util import CommonUtil, DateTypes
from utils.spark_util import SparkUtil
from pyspark.sql.types import BooleanType, IntegerType, StructType, StructField, StringType
from yswg_utils.common_df import get_self_asin_df, get_asin_unlanuch_df, get_node_first_id_df
from yswg_utils.common_udf import category_craw_flag, udf_get_package_quantity

"""
聚合nsr榜单Asin
"""


class DwtNsrAsinDetail(object):

    def __init__(self, site_name, date_info):
        self.site_name = site_name
        self.date_info = date_info
        app_name = f"{self.__class__.__name__}:{site_name}:{date_info}"
        self.spark = SparkUtil.get_spark_session(app_name)
        self.hive_tb = "dwt_nsr_asin_detail"
        self.current_month = CommonUtil.reformat_date(self.date_info, "%Y-%m-%d", "%Y-%m", )
        self.udf_category_craw_flag = F.udf(category_craw_flag, BooleanType())

        self.udf_cal_first_category_rank = F.udf(self.cal_first_category_rank,
                                                 StructType([StructField("first_category_rank", IntegerType(), True),
                                                             StructField("first_category_rank_date", StringType(), True)])
                                                 )

        self.udf_cal_package_quantity = F.udf(self.cal_package_quantity, IntegerType())
        self.udf_cal_seller_country_type = F.udf(self.cal_seller_country_type, IntegerType())

        pass

    @staticmethod
    def cal_first_category_rank(category_id, category_first_id, bsr_date_info, current_bsr_rank, flow_update_time,
                                first_category_rank):
        if category_id == category_first_id:
            #  如果是大类直接取 bsr_rank
            return (current_bsr_rank, bsr_date_info)
        else:
            # 小类则取流量选品
            return (first_category_rank, flow_update_time)

    @staticmethod
    def cal_package_quantity(title):
        """
        打包数量
        """
        val = udf_get_package_quantity(title)
        if val is None:
            val = 1
        return val

    @staticmethod
    def cal_seller_country_type(asin_buy_box_seller_type, seller_country_name):
        """
        卖家所属地类型
        :param asin_buy_box_seller_type:
        :param seller_country_name:
        :return:
        """
        if str(seller_country_name).lower() not in ['none', 'null']:
            if asin_buy_box_seller_type == 1:
                return 4
            elif asin_buy_box_seller_type != 1 and str(seller_country_name).upper().find('US') != -1:
                return 1
            elif asin_buy_box_seller_type != 1 and str(seller_country_name).upper().find('CN') != -1:
                return 2
            else:
                return 3
        else:
            return 0

    def run(self):
        df_dwt_flow_asin_part = CommonUtil.select_partitions_df(self.spark, "dwt_flow_asin")

        # dwt_flow_asin month 最新分区
        dwt_flow_asin_last_month = df_dwt_flow_asin_part \
            .filter(f"date_type = '{DateTypes.month.name}' and site_name = '{self.site_name}' ") \
            .selectExpr("max(date_info)").rdd.flatMap(lambda it: it).collect()[0]

        #  近30天的asin
        day_30_before = CommonUtil.get_day_offset(self.date_info, -30)

        sql = f"""
                select tmp.asin,
                       title,
                       img_url,
                       img_type,
                       ao_val,
                       rating,
                       total_comments,
                       bsr_orders,
                       bsr_orders_change,
                       price,
                       weight,
                       launch_time,
                       brand_name,
                       buy_box_seller_type,
                       account_name,
                       volume,
                       last_update_time,
                       asin_air_freight_gross_margin,
                       asin_ocean_freight_gross_margin,
                       category_first_id,
                        first_category_rank,
                        seller_id,
                        account_name,
                        seller_country_name,
                        asin_bought_month,
                        tmp_category_id
            from (
                         select asin , first(category_id) as tmp_category_id
                         from dwd_nsr_asin_rank
                         where site_name = '{self.site_name}'
                              and date_info <= "{self.date_info}"
                              and date_info >= "{day_30_before}"
                         group by asin
                 ) tmp
                     left join (
               select asin,
                       fd_unique              as seller_id,
                       first(fd_account_name) as account_name,
                       first(fd_country_name) as seller_country_name
                from dim_fd_asin_info
                where site_name = '{self.site_name}'
                group by asin, fd_unique
            ) tmp1 on tmp.asin = tmp1.asin
                     left join (
                    select asin,
                           asin_title               as title,
                           asin_img_url             as img_url,
                           asin_img_type            as img_type,
                           asin_rating              as rating,
                           asin_total_comments      as total_comments,
                           asin_price               as price,
                           asin_weight              as weight,
                           asin_launch_time         as launch_time,
                           asin_volume              as volume,
                           asin_brand_name          as brand_name,
                           asin_buy_box_seller_type as buy_box_seller_type,
                           asin_crawl_date          as last_update_time,
                           asin_rank                as first_category_rank,
                           category_first_id        as category_first_id
                from dim_cal_asin_history_detail
                where site_name = '{self.site_name}'
            ) tmp2 on tmp.asin = tmp2.asin
                     left join (
            select asin,
                   asin_ao_val                     as ao_val,
                   bsr_orders                      as bsr_orders,
                   asin_bsr_orders_change          as bsr_orders_change,
                   asin_air_freight_gross_margin   as asin_air_freight_gross_margin,
                   asin_ocean_freight_gross_margin as asin_ocean_freight_gross_margin,
                   cast(asin_bought_month as int ) as asin_bought_month
                from dwt_flow_asin
                where site_name = '{self.site_name}'
                  and date_type = '{DateTypes.month.name}'
                  and date_info = '{dwt_flow_asin_last_month}'
            ) tmp3 on tmp.asin = tmp3.asin
            """
        print("======================查询sql如下======================")
        print(sql)

        df_all = self.spark.sql(sql)

        # 内部asin
        df_self_asin = get_self_asin_df(self.site_name, self.spark).select(
            F.col("asin"),
            F.lit(1).alias("asin_type"),
        )
        # 下架asin
        df_unlanuch = get_asin_unlanuch_df(self.site_name, self.spark)

        df_node_first_id = get_node_first_id_df(self.site_name, self.spark).select(
            F.col("node_id").alias("tmp_category_id"),
            F.col("category_first_id").alias("tmp_category_first_id"),
        )

        df_all = df_all \
            .join(df_self_asin, on=["asin"], how='left') \
            .join(df_unlanuch, on=["asin"], how='left') \
            .join(df_node_first_id, on=["tmp_category_id"], how='left')

        # 新品没一级分类id的补全一级分类id
        df_all = df_all.withColumn("category_first_id", F.coalesce(F.col("category_first_id"), F.col("tmp_category_first_id")))

        df_all = df_all.withColumn("crawl_flag", self.udf_category_craw_flag(F.col("category_first_id"), F.col("asin")))

        # df_all = df_all.withColumn("first_category_rank_tuple", self.udf_cal_first_category_rank(
        #     F.col("category_id"),
        #     F.col("category_first_id"),
        #     F.col("bsr_date_info"),
        #     F.col("current_bsr_rank"),
        #     F.col("last_update_time"),
        #     F.col("first_category_rank"),
        # ))

        day_before_30 = CommonUtil.get_day_offset(self.date_info, -30)
        day_before_90 = CommonUtil.get_day_offset(self.date_info, -90)
        day_before_180 = CommonUtil.get_day_offset(self.date_info, -180)
        day_before_360 = CommonUtil.get_day_offset(self.date_info, -360)
        day_before_450 = CommonUtil.get_day_offset(self.date_info, -450)
        day_before_720 = CommonUtil.get_day_offset(self.date_info, -720)
        day_before_1080 = CommonUtil.get_day_offset(self.date_info, -1080)

        # 上架时间类型
        df_all = df_all.withColumn(
            'asin_launch_time_type',
            F.when(F.col("launch_time") >= day_before_30, F.lit(1))
                .when((F.col("launch_time") >= day_before_90) & (F.col("launch_time") < day_before_30), F.lit(2))
                .when((F.col("launch_time") >= day_before_180) & (F.col("launch_time") < day_before_90), F.lit(3))
                .when((F.col("launch_time") >= day_before_360) & (F.col("launch_time") < day_before_180), F.lit(4))
                .when((F.col("launch_time") >= day_before_450) & (F.col("launch_time") < day_before_360), F.lit(5))
                .when((F.col("launch_time") >= day_before_720) & (F.col("launch_time") < day_before_450), F.lit(6))
                .when((F.col("launch_time") >= day_before_1080) & (F.col("launch_time") < day_before_720), F.lit(7))
                .otherwise(F.lit(0))
        )

        # 打包数量
        df_all = df_all.withColumn("package_quantity", self.udf_cal_package_quantity(F.col("title")))
        # 卖家所属地
        df_all = df_all.withColumn("seller_country_type",
                                   self.udf_cal_seller_country_type(F.col("buy_box_seller_type"), F.col("seller_country_name")))

        df_all = df_all.select(
            F.col('asin'),
            F.col('title'),
            F.col('img_url'),
            F.col('img_type'),
            F.col('ao_val'),
            F.col('rating'),
            # 评论数量
            F.col('total_comments'),
            F.col('bsr_orders'),
            F.col('bsr_orders_change'),
            F.col('price'),
            F.col('weight'),
            F.col('launch_time'),
            F.trim(F.col('brand_name')).alias("brand_name"),
            F.col('buy_box_seller_type'),
            F.col('account_name'),
            F.col('volume'),
            F.col('last_update_time'),
            F.col('asin_air_freight_gross_margin'),
            F.col('asin_ocean_freight_gross_margin'),
            # 大类默认值空字符串
            F.coalesce('category_first_id', F.lit("")).alias("category_first_id"),

            F.when(F.col("asin_type").isNotNull(), F.lit(1))
                .when(F.col("crawl_flag") == False, F.lit(2))
                .otherwise(0).alias("asin_type"),
            #  asin 下架时间
            F.col("asin_unlaunch_time"),

            # 店铺唯一id
            F.col("seller_id"),
            # 卖家所属地
            F.col("seller_country_name"),
            # 大类排名
            F.col("first_category_rank").alias('first_category_rank'),
            # 大类排名时间
            F.col("last_update_time").alias('first_category_rank_date'),
            # 打包数量
            F.col("package_quantity"),
            # 上架时间类型
            F.col("asin_launch_time_type"),
            # 卖家所属地类型
            F.col("seller_country_type"),

            # 亚马逊销量(月)默认值给-1
            F.coalesce('asin_bought_month', F.lit(-1)).alias("asin_bought_month"),

            F.lit(self.site_name).alias("site_name"),
            F.lit(self.current_month).alias("date_info")
        )

        # 自动对齐
        df_all = CommonUtil.format_df_with_template(self.spark, df_all, self.hive_tb, roundDouble=True)
        #  分区数设置为6
        df_all = df_all.repartition(6)

        partition_dict = {
            "site_name": self.site_name,
            "date_info": self.current_month
        }

        partition_by = list(partition_dict.keys())
        hdfs_path = CommonUtil.build_hdfs_path(self.hive_tb, partition_dict=partition_dict)
        print(f"清除hdfs目录中:{hdfs_path}")
        HdfsUtils.delete_file_in_folder(hdfs_path)

        hive_tb = self.hive_tb
        print(f"当前存储的表名为:{hive_tb},分区为{partition_by}", )
        df_all.write.saveAsTable(name=hive_tb, format='hive', mode='append', partitionBy=partition_by)
        print("success")


if __name__ == '__main__':
    site_name = CommonUtil.get_sys_arg(1, None)
    date_info = CommonUtil.get_sys_arg(2, None)
    obj = DwtNsrAsinDetail(site_name=site_name, date_info=date_info)
    obj.run()