dim_asin_volume_info.py 14.1 KB
Newer Older
chenyuanjie committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
import os
import re
import sys

import pandas as pd

sys.path.append(os.path.dirname(sys.path[0]))  # 上级目录
from pyspark.storagelevel import StorageLevel
from utils.templates import Templates
# from ..utils.templates import Templates
# from AmazonSpider.pyspark_job.utils.templates_test import Templates
from pyspark.sql.types import StringType, BooleanType, StructType, StructField, DoubleType
# 分组排序的udf窗口函数
from pyspark.sql.window import Window
from pyspark.sql import functions as F


class DimAsinVolume(Templates):

    def __init__(self, site_name='us'):
        super(DimAsinVolume, self).__init__()
        self.site_name = site_name
        # self.date_type = date_type
        # self.date_info = date_info
        self.db_save = f'dim_asin_volume_info'
        self.spark = self.create_spark_object(app_name=f"{self.db_save}: {self.site_name}")
        self.get_date_info_tuple()
        self.df_asin_volume = self.spark.sql(f"select 1+1;")
        self.df_save = self.spark.sql(f"select 1+1;")
        # 注册自定义函数 (UDF)
        self.u_contains_digit_udf = F.udf(self.udf_contains_digit, BooleanType())
        self.u_asin_volume_type = F.udf(self.udf_asin_volume_type, StringType())
        # 定义 UDF 的返回类型,即一个包含三个 DoubleType 字段的 StructType
        schema = StructType([
            StructField('length', DoubleType(), True),
            StructField('width', DoubleType(), True),
            StructField('height', DoubleType(), True)
        ])
        self.u_extract_dimensions = F.udf(self.udf_extract_dimensions, schema)
        self.u_extract_dimensions_others = F.udf(self.udf_extract_dimensions_others, schema)
        # 分区信息
        self.reset_partitions(partitions_num=10)
        self.partitions_by = ['site_name']

    # 定义一个函数,检查字符串中是否包含数字
    @staticmethod
    def udf_contains_digit(s):
        # return any(char.isdigit() for char in s)

        if s is None:
            return False
        return any(char.isdigit() for char in s)

    # 定义一个函数,将asin_volume进行分类
    @staticmethod
    def udf_asin_volume_type_old(x):
        # pattern = r'\b\w+\b'
        pattern = r'[a-z]+'
        matches = re.findall(pattern, x)

        # 使用集合存储匹配的单词
        type_set = set()
        for word in matches:
            if 'inches' == word or 'inch' == word:
                type_set.add('inches')
            elif 'cm' == word:
                type_set.add('cm')

        # 根据集合的长度返回结果
        if len(type_set) == 1:
            return list(type_set)[0]
        elif len(type_set) == 2:
            return ','.join(type_set)
        else:
            return 'none'

    # 定义一个函数,将asin_volume进行分类
    @staticmethod
    def udf_asin_volume_type(x):
        # pattern = r'\b\w+\b'
        pattern = r'[a-z]+'
        matches = re.findall(pattern, x)

        # 使用集合存储匹配的单词
        type_set = set()
        for word in matches:
            if word in ['inches', 'inch']:
                type_set.add('inches')
            elif word in ['cm', 'centímetros', 'centimetres']:
                type_set.add('cm')
            elif word in ['milímetros', 'millimeter', 'mm']:
                type_set.add('mm')
            elif word in ['metros']:
                type_set.add('m')

        # 根据集合的长度返回结果
        if len(type_set) == 1:
            return list(type_set)[0]
        elif len(type_set) >= 2:
            return ','.join(type_set)
        else:
            return 'none'

    @staticmethod
    def udf_extract_dimensions(volume_str, asin_volume_type):
        length, width, height = None, None, None
        dimensions = []
        if asin_volume_type == 'cm,inches':
            num_inches = volume_str.find('inch')
            num_cm = volume_str.find('cm')
            volume_str = volume_str[:num_inches] if num_cm > num_inches else volume_str[num_cm:num_inches]
        dimensions = re.findall(r"(\d+(\.\d+)?)", volume_str)
        dimensions = [float(dim[0]) for dim in dimensions]
        # if asin_volume_type == 'inches':
        #     dimensions = volume_str.split(' x ')
        #     dimensions = [dim.split()[0] for dim in dimensions]
        #     dimensions = [float(dim) if dim.replace('.', '', 1).isdigit() else None for dim in dimensions]
        # else:
        #     if asin_volume_type == 'cm,inches':
        #         # 保留inches
        #         num_inches = volume_str.find('inch')
        #         num_cm = volume_str.find('cm')
        #         volume_str = volume_str[:num_inches] if num_cm > num_inches else volume_str[num_cm:num_inches]
        #
        #     dimensions = re.findall(r"(\d+(\.\d+)?)", volume_str)
        #     dimensions = [float(dim[0]) for dim in dimensions]

        if len(dimensions) == 1:
            length = dimensions[0]
        elif len(dimensions) == 2:
            if asin_volume_type == 'none':
                if "l" in volume_str and "w" in volume_str:
                    length, width = dimensions
                elif "w" in volume_str and "h" in volume_str:
                    width, height = dimensions
                elif "l" in volume_str and "h" in volume_str:
                    length, height = dimensions
                elif "d" in volume_str and "w" in volume_str:
                    length, width = dimensions
                elif "d" in volume_str and "h" in volume_str:
                    length, height = dimensions
            else:
                length, width = dimensions
        elif len(dimensions) == 3:
            length, width, height = dimensions
        elif len(dimensions) >= 4:
            length, width, height = dimensions[:3]
        return (length, width, height)

    @staticmethod
    def udf_extract_dimensions_others(volume_str, asin_volume_type):
        length, width, height = None, None, None
        if asin_volume_type == 'cm':
            dimensions = re.findall(r"(\d+(\.\d+)?)", volume_str)
            dimensions = [float(dim[0]) for dim in dimensions]
            if len(dimensions) == 1:
                length = dimensions[0]
            elif len(dimensions) == 2:
                length = dimensions[0]
                width = dimensions[1]
            elif len(dimensions) >= 3:
                length, width, height = dimensions[:3]
        return (length, width, height)

    def read_data(self):
        sql = f"select asin, volume as asin_volume, date_info from ods_asin_detail where site_name='{self.site_name}' and date_type='week'"  #  and date_info>='2023-15'
        # sql = f"-- select asin, volume as asin_volume, date_info from ods_asin_detail where site_name='{self.site_name}' and date_type='week' and date_info>='2023-15'"  #  and date_info>='2023-15'
        print("sql:", sql)
        self.df_asin_volume = self.spark.sql(sqlQuery=sql).cache()

    def handle_data_us(self):
        self.handle_filter_dirty_data()
        # self.handle_type_inches()
        # self.handle_type_cm()
        df_inches = self.handle_asin_volume_types_to_dimensions(asin_volume_type='inches')
        df_cm = self.handle_asin_volume_types_to_dimensions(asin_volume_type='cm')
        df_cm_inches = self.handle_asin_volume_types_to_dimensions(asin_volume_type='cm,inches')
        df_none = self.handle_asin_volume_types_to_dimensions(asin_volume_type='none')
        df_none_not_null = df_none.filter(~(df_none.length.isNull() & df_none.width.isNull() & df_none.height.isNull()))
        df_none_null = df_none.filter(df_none.length.isNull() & df_none.width.isNull() & df_none.height.isNull())
        df_none_not_null = df_none_not_null.withColumn("asin_volume_type", F.lit("inches"))
        print("df_none_not_null, df_none_null:", df_none_not_null.count(), df_none_null.count())
        # self.df_save = pd.concat([df_inches, df_cm, df_cm_inches, df_none])
        # 假设 df_inches、df_cm、df_cm_inches 和 df_none 都是 PySpark DataFrame
        self.df_save = df_inches.union(df_cm).union(df_cm_inches).union(df_none_not_null).union(df_none_null)
        self.df_save = self.df_save.withColumn("site_name", F.lit(self.site_name))
        self.df_save = self.df_save.drop("asin_volume_flag")
        self.df_save = self.df_save.withColumnRenamed("length", "asin_length"). \
            withColumnRenamed("width", "asin_width"). \
            withColumnRenamed("height", "asin_height")

    def handle_data_others(self):
        self.handle_filter_dirty_data()
        # 提取体积字符串中的length, width, height
        self.df_asin_volume = self.df_asin_volume.withColumn('dimensions', self.u_extract_dimensions_others('asin_volume', 'asin_volume_type'))
        self.df_save = self.df_asin_volume \
            .withColumn('asin_length', self.df_asin_volume.dimensions.getField('length')) \
            .withColumn('asin_width', self.df_asin_volume.dimensions.getField('width')) \
            .withColumn('asin_height', self.df_asin_volume.dimensions.getField('height')) \
            .drop('dimensions')
        self.df_save = self.df_save.withColumn("site_name", F.lit(self.site_name))
        self.df_save = self.df_save.drop("asin_volume_flag")

    def handle_data(self):
        if self.site_name == 'us':
            self.handle_data_us()
        else:
            self.handle_data_others()

    def handle_filter_dirty_data(self):
        # 将 asin_volume 列转换为小写
        self.df_asin_volume = self.df_asin_volume.withColumn("asin_volume", F.lower(self.df_asin_volume["asin_volume"]))
        # 使用自定义函数创建新列 asin_volume_flag
        self.df_asin_volume = self.df_asin_volume.withColumn("asin_volume_flag", self.u_contains_digit_udf(self.df_asin_volume["asin_volume"]))
        # 假设 df 是一个 PySpark DataFrame,asin_volume_flag 是 DataFrame 中的一列
        # self.df_asin_volume.groupBy('asin_volume_flag').agg(F.count('asin_volume_flag')).show()
        # self.df_asin_volume.show()
        self.df_asin_volume = self.df_asin_volume.filter('asin_volume_flag is True')
        # self.df_asin_volume.groupBy('asin_volume_flag').agg(F.count('asin_volume_flag')).show()
        # self.df_asin_volume.show()
        self.df_asin_volume = self.df_asin_volume.withColumn("asin_volume_type", self.u_asin_volume_type(self.df_asin_volume["asin_volume"]))
        self.df_asin_volume.groupBy('asin_volume_type').agg(F.count('asin_volume_type')).show()
        self.df_asin_volume.show()
        # 假设 df 是一个 PySpark DataFrame,date_info 是 DataFrame 中的一列
        window = Window.partitionBy('asin').orderBy(F.desc('date_info'))  # 按照 date_info 列进行分区,并按照 date 列进行排序
        self.df_asin_volume = self.df_asin_volume.withColumn('row_number', F.row_number().over(window))  # 使用窗口函数为每个分区的行编号
        self.df_asin_volume = self.df_asin_volume.filter(self.df_asin_volume.row_number == 1).drop('row_number')  # 只保留每个分区中 row_number 最大的行,并删除 row_number 列
        self.df_asin_volume.groupBy('asin_volume_type').agg(F.count('asin_volume_type')).show()
        self.df_asin_volume.show()

    def handle_asin_volume_types_to_dimensions(self, asin_volume_type='inches'):
        df = self.df_asin_volume.filter(f'asin_volume_type="{asin_volume_type}"').cache()
        # 使用 UDF 提取长宽高并添加新的列
        df = df.withColumn('dimensions', self.u_extract_dimensions('asin_volume', F.lit(asin_volume_type)))
        # 将新的列拆分成三个列并删除 dimensions 列
        df = df \
            .withColumn('length', df.dimensions.getField('length')) \
            .withColumn('width', df.dimensions.getField('width')) \
            .withColumn('height', df.dimensions.getField('height')) \
            .drop('dimensions')
        df.show(10, truncate=False)

        # # 假设 df_asin_none 是一个 PySpark DataFrame,length、width 和 height 是 DataFrame 中的列
        # df_null = df.filter(df.length.isNull() & df.width.isNull() & df.height.isNull())
        # print("asin_volume_type, df_null:", asin_volume_type, df_null.count())
        # df_null.show(50, truncate=False)
        return df

    def handle_type_inches(self):
        df_asin_inches = self.df_asin_volume.filter('asin_volume_type="inches"').cache()
        # 使用 UDF 提取长宽高并添加新的列
        df_asin_inches = df_asin_inches.withColumn('dimensions', self.u_extract_dimensions('asin_volume'))
        # 将新的列拆分成三个列并删除 dimensions 列
        df_asin_inches = df_asin_inches \
            .withColumn('length', df_asin_inches.dimensions.getField('length')) \
            .withColumn('width', df_asin_inches.dimensions.getField('width')) \
            .withColumn('height', df_asin_inches.dimensions.getField('height')) \
            .drop('dimensions')
        df_asin_inches.show()

    def handle_type_cm(self):
        df_asin_cm = self.df_asin_volume.filter('asin_volume_type="cm"').cache()
        # 使用 UDF 提取长宽高并添加新的列
        df_asin_cm = df_asin_cm.withColumn('dimensions', self.u_extract_dimensions('asin_volume'))
        # 将新的列拆分成三个列并删除 dimensions 列
        df_asin_cm = df_asin_cm \
            .withColumn('length', df_asin_cm.dimensions.getField('length')) \
            .withColumn('width', df_asin_cm.dimensions.getField('width')) \
            .withColumn('height', df_asin_cm.dimensions.getField('height')) \
            .drop('dimensions')
        df_asin_cm.show()

    def handle_type_none(self):
        df_asin_cm = self.df_asin_volume.filter('asin_volume_type="none"').cache()
        # 使用 UDF 提取长宽高并添加新的列
        df_asin_cm = df_asin_cm.withColumn('dimensions', self.u_extract_dimensions('asin_volume'))
        # 将新的列拆分成三个列并删除 dimensions 列
        df_asin_cm = df_asin_cm \
            .withColumn('length', df_asin_cm.dimensions.getField('length')) \
            .withColumn('width', df_asin_cm.dimensions.getField('width')) \
            .withColumn('height', df_asin_cm.dimensions.getField('height')) \
            .drop('dimensions')
        df_asin_cm.show()


if __name__ == '__main__':
    site_name = sys.argv[1]  # 参数1:站点
    handle_obj = DimAsinVolume(site_name=site_name)
    handle_obj.run()