dwt_aba_st_analytics.py 38.1 KB
Newer Older
chenyuanjie committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
import os
import sys
import time

sys.path.append(os.path.dirname(sys.path[0]))  # 上级目录
from utils.templates import Templates
from pyspark.sql.window import Window
from pyspark.sql import functions as F
from pyspark.sql.types import IntegerType
from utils.db_util import DBUtil
from utils.spark_util import SparkUtil
from yswg_utils.common_udf import udf_detect_phrase_reg


class DwtAbaStAnalytics(Templates):

    def __init__(self, site_name="us", date_type="week", date_info="2022-40"):
        super().__init__()
        self.site_name = site_name
        self.date_type = date_type
        self.date_info = date_info
        self.db_save = f"dwt_aba_st_analytics"
        self.spark = self.create_spark_object(
            app_name=f"{self.db_save}: {self.site_name},{self.date_type}, {self.date_info}")

        # 写入、分区初始化
        self.df_save = self.spark.sql(f"select 1+1;")
        self.partitions_by = ['site_name', 'date_type', 'date_info']
        self.reset_partitions(partitions_num=10)

        # 初始化列表
        self.sp_symbols = []

        # 初始化全局df
        self.df_st_measure = self.spark.sql(f"select 1+1;")
        self.df_asin_measure = self.spark.sql(f"select 1+1;")
        self.df_st_asin_measure = self.spark.sql(f"select 1+1;")
        self.df_asin_detail = self.spark.sql(f"select 1+1;")
        self.df_seller_asin_info = self.spark.sql(f"select 1+1;")
        self.df_st_asin_cal = self.spark.sql(f"select 1+1;")
        self.df_st_asin_join = self.spark.sql(f"select 1+1;")
        self.df_seller_asin_country = self.spark.sql(f"select 1+1;")
        self.df_st_brand_cal = self.spark.sql(f"select 1+1;")
        self.df_top3_st_brand_cal = self.spark.sql(f"select 1+1;")
        self.df_st_seller_cal = self.spark.sql(f"select 1+1;")
        self.df_top3_st_seller_cal = self.spark.sql(f"select 1+1;")
        self.df_st_num_stats = self.spark.sql(f"select 1+1;")
        self.df_st_detail = self.spark.sql(f"select 1+1;")
        self.df_st_key = self.spark.sql(f"select 1+1;")
        self.df_st_market = self.spark.sql(f"select 1+1;")
        self.df_st_volume_fba = self.spark.sql(f"select 1+1;")
        self.df_st_brand = self.spark.sql(f"select 1+1;")
        self.df_asin_label = self.spark.sql(f"select 1+1;")
        self.df_is_hidden_cate = self.spark.sql(f"select 1+1;")

        # 自定义udf函数注册
        self.u_contains = self.spark.udf.register('u_contains', self.udf_contains, IntegerType())
        self.u_judge_color = self.spark.udf.register('u_judge_color', self.udf_judge_color, IntegerType())
        self.u_judge_title_color = self.spark.udf.register(
            'u_judge_title_color', self.udf_judge_title_color, IntegerType()
        )
        self.u_judge_multi_size = self.spark.udf.register(
            'u_judge_multi_size', self.udf_judge_multi_size, IntegerType()
        )

    # 解析aba搜索词的拆词个数
    def st_word_count(self, sp_symbols):
        def udf_st_word_count(name):
            # 特殊字符基准列表---迁移到数据库维护 -已处理
            # sp_symbols = ['?', '!', '-', '%', '&', '|']
            split_list = name.split(" ")
            # 取切割list中包含的特殊字符
            sp_list = list(set(split_list).intersection(set(sp_symbols)))
            # 排除掉特殊list中的特殊字符
            word_list = list(filter(lambda x: x not in sp_list, split_list))
            word_count = len(word_list)
            # 存在多个特殊字符都设定为 1
            if len(sp_list) > 0:
                symbol_count = 1
            else:
                symbol_count = 0
            return word_count + symbol_count

        return F.udf(udf_st_word_count, IntegerType())

    @staticmethod
    def udf_contains(sub, text):
        if text is None:
            return None
        if str(sub).lower() in str(text).lower():
            return 1
        else:
            return 0

    # @staticmethod
    # def udf_get_volume(volume):
    #     # print("get_volume", volume)
    #     volume = str(volume)
    #     if volume == "null":
    #         return None
    #     else:
    #         pattern = r"\d+\.?\d*"
    #         volumeList = re.findall(pattern, volume)
    #         if len(volumeList):
    #             volumeList = list(map(float, volumeList))
    #             result = reduce((lambda x, y: x * y), volumeList)
    #             return result
    #         else:
    #             return None

    @staticmethod
    def udf_judge_color(color):
        if color is None:
            return None
        color = str(color).lower()
        color_len = len(color)
        if color not in ['null', 'none'] and color_len > 1:
            return 1
        else:
            return 0

    @staticmethod
    def udf_judge_title_color(asin_title):
        if asin_title is None:
            return None
        title = str(asin_title).lower()
        modeTypes = ['colorful', 'assorted color', 'multi color']
        for color in modeTypes:
            if color in title:
                return 1
        return 0

    @staticmethod
    def udf_judge_multi_size(size, style):
        size = str(size).lower()
        style = str(style).lower()
        # 变体表中即有size又有style时,取size进行计数。如果无size,则判断是否有style进行计数
        if size not in ['none', 'null']:
            return 1
        else:
            if style not in ['none', 'null']:
                return 1
        return 0

    def read_data(self):
        # 一些不涵盖month_old的分区,重定义成month,其他正常
        spe_date_type = 'month' if 'month_old' == self.date_type else self.date_type

        # 获取ods_st_key, st唯一主键
        sql = f"""
        select 
            search_term,
            cast(st_key as int) as id 
        from ods_st_key 
        where site_name = '{self.site_name}' 
        """
        self.df_st_key = self.spark.sql(sqlQuery=sql)
        self.df_st_key = self.df_st_key.repartition(80, 'search_term').cache()
        print("self.df_st_key:")
        self.df_st_key.show(10, truncate=True)

        # 获取dwd_st_measure 事实表
        sql = f"""
        select 
            search_term,
            st_zr_orders,
            st_bsr_orders,
            st_ao_val                     as st_ao_avg,
            st_ao_val_rate,
            st_zr_page1_title_appear_rate as page1_title_proportion,
            null                          as st_4_20_ao_avg,
            null                          as st_4_20_ao_rate,
            st_volume_avg                 as volume_avg,
            st_weight_avg                 as weight_avg,
            st_price_avg                  as price_avg,
            st_zr_page123_title_appear_rate,
            st_sp_page123_title_appear_rate,
            st_zr_flow_proportion,
            st_ao_val_matrix,
            st_flow_proportion_matrix,
            st_zr_counts,
            st_sp_counts,
            st_self_asin_counts,
            st_self_asin_proportion
        from dwd_st_measure
        where site_name = '{self.site_name}' 
        and date_type = '{self.date_type}' 
        and date_info = '{self.date_info}' 
        """
        self.df_st_measure = self.spark.sql(sqlQuery=sql)
        self.df_st_measure = self.df_st_measure.repartition(80, 'search_term').cache()
        print("self.df_st_measure:")
        self.df_st_measure.show(10, truncate=True)

        # 获取dwd_st_asin_measure 事实表
        sql = f"""
        select 
            search_term,
            asin 
        from dwd_st_asin_measure 
        where site_name = '{self.site_name}' 
        and date_type = '{self.date_type}' 
        and date_info = '{self.date_info}'
        """
        self.df_st_asin_measure = self.spark.sql(sqlQuery=sql)
        self.df_st_asin_measure = self.df_st_asin_measure.repartition(80, 'asin').cache()
        print("self.df_st_asin_measure:")
        self.df_st_asin_measure.show(10, truncate=True)

        # 获取dwd_asin_measure 事实表
        sql = f"""
        select 
            asin,
            asin_bsr_orders,
            asin_zr_orders,
            asin_amazon_orders 
        from dwd_asin_measure 
        where site_name = '{self.site_name}' 
        and date_type = '{self.date_type}' 
        and date_info = '{self.date_info}' 
        """
        self.df_asin_measure = self.spark.sql(sqlQuery=sql)
        self.df_asin_measure = self.df_asin_measure.repartition(80, 'asin').cache()
        print("self.df_asin_measure:")
        self.df_asin_measure.show(10, truncate=True)

        # 获取dim_asin_detail表
        sql = f"""
        select 
            asin, 
            asin_title, 
            asin_title_len, 
            asin_category_desc,
            asin_rank, 
            asin_color, 
            asin_size, 
            asin_style, 
            asin_price, 
            asin_rating,
            asin_total_comments, 
            asin_material, 
            asin_brand_name,
            bsr_cate_1_id, 
            asin_buy_box_seller_type, 
            asin_is_amazon,
            asin_is_fba, 
            asin_is_fbm, 
            asin_is_other, 
            asin_is_sale,
            asin_launch_time, 
            asin_is_new, 
            asin_img_num, 
            asin_img_type,
            asin_is_picture, 
            asin_is_video, 
            asin_is_aadd 
        from dim_asin_detail  
        where site_name = '{self.site_name}' 
        and date_type = '{spe_date_type}' 
        and date_info = '{self.date_info}' 
        """
        self.df_asin_detail = self.spark.sql(sqlQuery=sql)
        self.df_asin_detail = self.df_asin_detail.repartition(80, 'asin').cache()
        print("self.df_asin_detail:")
        self.df_asin_detail.show(10, truncate=True)

        # 仅获取 asin和country_name,对country_name进行了聚合处理
        sql = f"""
        select 
            asin,
            concat_ws(\",\",collect_list(cast(fd_country_name as string))) as country_name 
        from dim_fd_asin_info  
        where site_name = '{self.site_name}'  
        group by asin;
        """
        self.df_seller_asin_country = self.spark.sql(sqlQuery=sql)
        self.df_seller_asin_country = self.df_seller_asin_country.repartition(80, 'asin').cache()
        print("self.df_seller_asin_country:")
        self.df_seller_asin_country.show(10, truncate=True)

        # 获取 dim_fd_asin_info 表
        sql = f"""
        select 
            asin,
            fd_unique as account_id,
            fd_country_name as country_name 
        from dim_fd_asin_info 
        where site_name = '{self.site_name}' 
        """
        self.df_seller_asin_info = self.spark.sql(sqlQuery=sql)
        self.df_seller_asin_info = self.df_seller_asin_info.drop_duplicates(['asin']).repartition(80, 'asin').cache()
        print("self.df_seller_asin_info:")
        self.df_seller_asin_info.show(10, truncate=True)

        # 获取 dim_st_detail asin1-3共享点击信息表
        sql = f"""
        select 
            search_term,
            st_rank                                                          as rank,
            st_asin1                                                         as asin1,
            st_asin2                                                         as asin2,
            st_asin3                                                         as asin3,
            st_click_share1                                                  as click_share1,
            st_click_share2                                                  as click_share2,
            st_click_share3                                                  as click_share3,
            st_click_share_sum                                               as total_click_share,
            st_is_new_market_segment                                         as is_new_market_segment,
            st_conversion_share1                                             as conversion_share1,
            st_conversion_share2                                             as conversion_share2,
            st_conversion_share3                                             as conversion_share3,
            st_conversion_share_sum                                          as total_conversion_share,
            st_quantity_being_sold                                           as quantity_being_sold,
            cast(st_bsr_cate_1_id as int)                                    as category_id,
            st_search_num                                                    as search_volume,
            st_is_first_text                                                 as is_first_text,
            st_is_ascending_text                                             as is_ascending_text,
            st_is_search_text                                                as is_search_text,
            cast(st_bsr_cate_current_id as int)                              as category_current_id,
            st_appear_history_counts                                         as st_num,
            cast((st_quantity_being_sold / st_search_num) as decimal(10, 3)) as supply_demand,
            st_brand1,
            st_category1,
            st_brand2,
            st_category2,
            st_brand3,
            st_category3,
            st_bsr_cate_1_id_new,
            st_bsr_cate_current_id_new,
            if(st_appear_history_counts>=4 and (st_click_share_sum > st_conversion_share_sum),1,0) as is_high_return_text,
            date_format(st_updated_time, 'yyyy-MM-dd HH:mm:ss')              as st_crawl_date,
            st_competition_level
        from dim_st_detail
        where site_name = '{self.site_name}' 
        and date_type = '{self.date_type}' 
        and date_info = '{self.date_info}'
        """
        self.df_st_detail = self.spark.sql(sqlQuery=sql)
        self.df_st_detail = self.df_st_detail.repartition(80, 'search_term').cache()
        print("self.df_st_detail:")
        self.df_st_detail.show(10, truncate=True)

        # 获取dws_st_num_stats表 取max_num、most_proportion
        sql = f""" 
        select 
            search_term,
            cast(max_num as double) as max_num,
            most_proportion,
            max_num_asin,
            is_self_max_num_asin 
        from dws_st_num_stats 
        where site_name = '{self.site_name}' 
        and date_type = '{self.date_type}' 
        and date_info = '{self.date_info}'
        and max_num_asin is not null 
        """
        self.df_st_num_stats = self.spark.sql(sqlQuery=sql)
        self.df_st_num_stats = self.df_st_num_stats.repartition(80, 'search_term').cache()
        print("self.df_st_num_stats:")
        self.df_st_num_stats.show(10, truncate=True)

        # 获取dwt_st_market表 取market_cycle_type
        sql = f"""
        select 
            search_term,
            cast(market_cycle_type as int ) as market_cycle_type 
        from dwt_st_market 
        where site_name = '{self.site_name}' 
        and date_type = '{self.date_type}' 
        and date_info = '{self.date_info}'
        """
        self.df_st_market = self.spark.sql(sqlQuery=sql)
        self.df_st_market = self.df_st_market.repartition(80, 'search_term').cache()
        print("self.df_st_market:")
        self.df_st_market.show(10, truncate=True)

        # 获取dwd_st_volume_fba 取gross_profit_fee_air 和 gross_profit_fee_sea
        sql = f"""
        select 
            search_term,
            gross_profit_fee_air,
            gross_profit_fee_sea 
        from dwd_st_volume_fba 
        where site_name = '{self.site_name}' 
        and date_type = '{self.date_type}' 
        and date_info = '{self.date_info}' 
        """
        self.df_st_volume_fba = self.spark.sql(sqlQuery=sql)
        self.df_st_volume_fba = self.df_st_volume_fba.repartition(80, 'search_term').cache()
        print("self.df_st_volume_fba:")
        self.df_st_volume_fba.show(10, truncate=True)

        # 获取影视标签dim_asin_label 取 asin_label_type
        sql = f"""
        select 
            asin, 
            asin_label_type 
        from dim_asin_label 
        where site_name = '{self.site_name}' 
        and date_type = '{self.date_type}' 
        and date_info = '{self.date_info}' 
        """
        self.df_asin_label = self.spark.sql(sqlQuery=sql)
        self.df_asin_label = self.df_asin_label.repartition(80, 'asin').cache()
        print("self.df_asin_label:")
        self.df_asin_label.show(10, truncate=True)

        # 获取品牌词库
        sql = f"""
        select 
            search_term,
            st_brand_label 
        from dws_st_brand_info
        where site_name = '{self.site_name}'
        and date_type = '{self.date_type}'
        and date_info = '{self.date_info}'
        and st_brand_label = 1
        """
        self.df_st_brand = self.spark.sql(sqlQuery=sql)
        self.df_st_brand = self.df_st_brand.repartition(80, 'search_term').cache()
        print("self.df_st_brand:")
        self.df_st_brand.show(10, truncate=True)

        # 从pgsql获取特殊字符匹配字典表:match_character_dict
        pg_sql = f"""
        select 
            character_name 
        from match_character_dict 
        where match_type = '特殊字符'
        """
        conn_info = DBUtil.get_connection_info("mysql", "us")
        chart_dict_df = SparkUtil.read_jdbc_query(
            session=self.spark,
            url=conn_info["url"],
            pwd=conn_info["pwd"],
            username=conn_info["username"],
            query=pg_sql
        )
        # 将数据转换成pandas df
        dict_df = chart_dict_df.toPandas()
        # 提取特殊字符list
        self.sp_symbols = dict_df["character_name"].values.tolist()

        # 隐藏分类
        # Apps & Games、Audible Books & Originals、Books、CDs & Vinyl、Digital Music、Kindle Store、Movies & TV、Software
        sql = f"""
        select 
            category_id as st_bsr_cate_1_id_new, 
            1 as is_hidden_cate 
        from dim_bsr_category_tree
        where site_name = '{self.site_name}'
          and en_name in ("Apps & Games", "Audible Books & Originals", "Books", "CDs & Vinyl", "Digital Music", "Kindle Store", "Movies & TV", "Software")
          and category_parent_id = 0;
        """
        self.df_is_hidden_cate = self.spark.sql(sqlQuery=sql)
        self.df_is_hidden_cate = self.df_is_hidden_cate.repartition(80).cache()
        print("self.df_is_hidden_cate:")
        self.df_is_hidden_cate.show(10, truncate=True)

    def handle_data(self):
        # 对基础计算表进行关联
        self.handle_base_join()

        # 对st_asin按st进行指标聚合
        self.handle_st_agg()

        # 对品牌和卖家按st进行指标聚合
        self.handle_brand_seller_agg()

        # 计算最终指标
        self.handle_st_cal()

        # 语种处理
        self.handle_calc_lang()

        # 处理输出字段
        self.handle_column()

    def handle_base_join(self):
        self.df_st_asin_join = self.df_st_asin_measure.join(
            self.df_asin_measure, on=['asin'], how='left'
        ).join(
            self.df_asin_detail, on=['asin'], how='left'
        ).join(
            self.df_asin_label, on=['asin'], how='left'
        ).cache()
        self.df_st_asin_measure.unpersist()
        self.df_asin_measure.unpersist()
        self.df_asin_detail.unpersist()
        self.df_asin_label.unpersist()

        self.df_st_asin_cal = self.df_st_asin_join.join(
            self.df_seller_asin_country, on=['asin'], how='left'
        )

        # 计算品牌相关指标df
        self.df_st_brand_cal = self.df_st_asin_join

        # 计算卖家相关指标df
        self.df_st_seller_cal = self.df_st_asin_join.join(
            self.df_seller_asin_info, on=['asin'], how='left'
        )

    def handle_st_agg(self):
        self.df_st_asin_cal = self.df_st_asin_cal.withColumn(
            # 打上是否中国卖家标签
            "asin_is_cn",
            self.u_contains(F.lit('CN'), F.col("country_name"))
        ).withColumn(
            # 新品bsr销量
            "asin_is_new_bsr_orders",
            F.when(F.col("asin_is_new") == 1, F.col("asin_bsr_orders"))
        ).withColumn(
            # 新品zr销量
            "asin_is_new_zr_orders",
            F.when(F.col("asin_is_new") == 1, F.col("asin_zr_orders"))
        ).withColumn(
            # 标记是否有颜色标签
            "asin_is_color_flag",
            self.u_judge_color(F.col("asin_color"))
        ).withColumn(
            # 标记标题中是否出现多色关键词
            "asin_is_multi_color",
            self.u_judge_title_color(F.col("asin_title"))
        ).na.fill({
            # 判断是否多尺寸时,先对多尺寸判断字段进行空值处理
            "asin_size": "None",
            "asin_style": "None"
        }).withColumn(
            # 判断是否多尺寸
            "asin_is_multi_size",
            self.u_judge_multi_size(F.col("asin_size"), F.col("asin_style"))
        ).withColumn(
            # 增加判断是否是影视产品标签
            "asin_is_movie_flag",
            F.when(F.col("asin_label_type") == 1, F.lit(1))
        )

        # group by 按search_term 聚合
        self.df_st_asin_cal = self.df_st_asin_cal.groupby(['search_term']).agg(
            F.count("asin").alias("asin_count"),
            F.sum("asin_is_new").alias("asin_is_new_total"),
            F.sum("asin_is_aadd").alias("asin_aadd_count"),
            F.sum("asin_is_video").alias("asin_video_count"),
            F.sum("asin_is_fbm").alias("asin_fbm_count"),
            F.sum("asin_is_amazon").alias("asin_amazon_count"),
            F.sum("asin_is_cn").alias("asin_cn_count"),
            F.sum("asin_is_new_bsr_orders").alias("new_asin_bsr_orders"),
            F.sum("asin_is_new_zr_orders").alias("new_asin_orders"),
            F.sum("asin_is_color_flag").alias("asin_color_count"),
            F.sum("asin_is_multi_color").alias("asin_multi_color_count"),
            F.sum("asin_is_multi_size").alias("asin_multi_size_count"),
            F.sum("asin_is_movie_flag").alias("asin_movie_type_count"),
            F.sum("asin_amazon_orders").alias("amazon_monthly_sales"),
            F.avg("asin_title_len").alias("title_length_avg"),
            F.avg("asin_rating").alias("rating_avg"),
            F.avg("asin_total_comments").alias("total_comments_avg")
        ).repartition(80, 'search_term').cache()

    def handle_brand_seller_agg(self):
        # 计算品牌top3销量和总销量
        self.df_st_brand_cal = self.df_st_brand_cal.filter("asin_brand_name is not null")
        self.df_st_brand_cal = self.df_st_brand_cal.filter("asin_brand_name not in('null','None')")
        self.df_st_brand_cal = self.df_st_brand_cal.groupby(['search_term', 'asin_brand_name']).agg(
            F.sum("asin_bsr_orders").alias("asin_brand_bsr_orders_total"),
            F.sum("asin_zr_orders").alias("asin_brand_zr_orders_total")
        )

        self.df_top3_st_brand_cal = self.df_st_brand_cal
        # top3品牌bsr销量
        brand_bsr_window = Window.partitionBy(["search_term"]).orderBy(
            self.df_top3_st_brand_cal.asin_brand_bsr_orders_total.desc_nulls_last()
        )
        df_st_brand_top3_bsr_orders = self.df_top3_st_brand_cal.withColumn(
            "brand_rank",
            F.row_number().over(window=brand_bsr_window)
        )
        df_st_brand_top3_bsr_orders = df_st_brand_top3_bsr_orders.filter("brand_rank<=3")
        df_st_brand_top3_bsr_orders = df_st_brand_top3_bsr_orders.groupby(["search_term"]).agg(
            F.sum("asin_brand_bsr_orders_total").alias("top3_brand_bsr_orders")
        )

        # top3品牌zr销量
        brand_zr_window = Window.partitionBy(["search_term"]).orderBy(
            self.df_top3_st_brand_cal.asin_brand_zr_orders_total.desc_nulls_last()
        )
        df_st_brand_top3_zr_orders = self.df_top3_st_brand_cal.withColumn(
            "brand_rank",
            F.row_number().over(window=brand_zr_window)
        )
        df_st_brand_top3_zr_orders = df_st_brand_top3_zr_orders.filter("brand_rank<=3")
        df_st_brand_top3_zr_orders = df_st_brand_top3_zr_orders.groupby(["search_term"]).agg(
            F.sum("asin_brand_zr_orders_total").alias("top3_brand_orders")
        )

        # 品牌总销量
        self.df_st_brand_cal = self.df_st_brand_cal.groupby(['search_term']).agg(
            F.count_distinct("asin_brand_name").alias("page3_brand_num")
        ).repartition(80, 'search_term')

        # 聚合得到st_brand
        self.df_st_brand_cal = self.df_st_brand_cal.join(
            df_st_brand_top3_bsr_orders, on=['search_term'], how='left'
        ).join(
            df_st_brand_top3_zr_orders, on=['search_term'], how='left'
        )

        self.df_st_brand_cal = self.df_st_brand_cal.select(
            "search_term", "page3_brand_num", "top3_brand_bsr_orders", "top3_brand_orders"
        ).cache()

        # 计算卖家top3销量和总销量
        self.df_st_seller_cal = self.df_st_seller_cal.filter("account_id is not null")
        self.df_st_seller_cal = self.df_st_seller_cal.groupby(['search_term', 'account_id']).agg(
            F.sum("asin_bsr_orders").alias("asin_seller_bsr_orders_total"),
            F.sum("asin_zr_orders").alias("asin_seller_zr_orders_total")
        )

        self.df_top3_st_seller_cal = self.df_st_seller_cal

        # 计算top3卖家bsr销量
        seller_bsr_window = Window.partitionBy(["search_term"]).orderBy(
            self.df_top3_st_seller_cal.asin_seller_bsr_orders_total.desc_nulls_last()
        )
        df_st_seller_top3_bsr_orders = self.df_top3_st_seller_cal.withColumn(
            "seller_rank",
            F.row_number().over(window=seller_bsr_window)
        )
        df_st_seller_top3_bsr_orders = df_st_seller_top3_bsr_orders.filter("seller_rank<=3")
        df_st_seller_top3_bsr_orders = df_st_seller_top3_bsr_orders.groupby(["search_term"]).agg(
            F.sum("asin_seller_bsr_orders_total").alias("top3_seller_bsr_orders")
        )

        # 计算top3卖家的zr销量
        seller_zr_window = Window.partitionBy(["search_term"]).orderBy(
            self.df_st_seller_cal.asin_seller_zr_orders_total.desc_nulls_last()
        )
        df_st_seller_top3_zr_orders = self.df_st_seller_cal.withColumn(
            "seller_rank",
            F.row_number().over(window=seller_zr_window)
        )
        df_st_seller_top3_zr_orders = df_st_seller_top3_zr_orders.filter("seller_rank<=3")
        df_st_seller_top3_zr_orders = df_st_seller_top3_zr_orders.groupby(["search_term"]).agg(
            F.sum("asin_seller_zr_orders_total").alias("top3_seller_orders")
        )

        # 卖家总数量
        self.df_st_seller_cal = self.df_st_seller_cal.groupby(['search_term']).agg(
            F.countDistinct("account_id").alias("page3_seller_num")
        ).repartition(80, 'search_term')

        # 聚合得到st_seller
        self.df_st_seller_cal = self.df_st_seller_cal.join(
            df_st_seller_top3_bsr_orders, on=['search_term'], how='left'
        ).join(
            df_st_seller_top3_zr_orders, on=['search_term'], how='left'
        )

        self.df_st_seller_cal = self.df_st_seller_cal.select(
            "search_term", "page3_seller_num", "top3_seller_bsr_orders", "top3_seller_orders"
        ).cache()

    # 计算最终指标
    def handle_st_cal(self):
        # 将st,st_asin,st_seller,st_brand按search_term聚合
        df_st_agg = self.df_st_measure.join(
            self.df_st_asin_cal, on=['search_term'], how='left'
        ).join(
            self.df_st_brand_cal, on=['search_term'], how='left'
        ).join(
            self.df_st_seller_cal, on=['search_term'], how='left'
        )
        self.df_st_measure.unpersist()
        self.df_st_asin_cal.unpersist()
        self.df_st_brand_cal.unpersist()
        self.df_st_seller_cal.unpersist()

        # 求值
        df_st_agg = df_st_agg.withColumn(
            # 新品产品数量/前三页产品总数
            "new_asin_proportion",
            F.round(F.col("asin_is_new_total") / F.col("asin_count"), 3)
        ).withColumn(
            # 当日A+商品占比
            "aadd_proportion",
            F.round(F.col("asin_aadd_count") / F.col("asin_count"), 3)
        ).withColumn(
            # 当日视频商品占比
            "sp_proportion",
            F.round(F.col("asin_video_count") / F.col("asin_count"), 3)
        ).withColumn(
            # 当日FBM商品占比
            "fbm_proportion",
            F.round(F.col("asin_fbm_count") / F.col("asin_count"), 3)
        ).withColumn(
            # 中国卖家占比
            "cn_proportion",
            F.round(F.col("asin_cn_count") / F.col("asin_count"), 3)
        ).withColumn(
            # Amazon自营占比
            "amzon_proportion",
            F.round(F.col("asin_amazon_count") / F.col("asin_count"), 3)
        ).withColumn(
            # 多颜色占比 = 关键字有颜色的asin数/关键字的asin数
            "color_proportion",
            F.round(F.col("asin_color_count") / F.col("asin_count"), 3)
        ).withColumn(
            # 多色比例 = 关键词前三页产品标题中出现colorful/assorted color/multi color的词产品个数/前三页产品数量
            "multi_color_proportion",
            F.round(F.col("asin_multi_color_count") / F.col("asin_count"), 3)
        ).withColumn(
            # 多尺寸占比
            "multi_size_proportion",
            F.round(F.col("asin_multi_size_count") / F.col("asin_count"), 3)
        ).withColumnRenamed(
            # 新品总数
            "asin_is_new_total",
            "new_asin_num"
        ).withColumnRenamed(
            # 产品总数
            "asin_count",
            "total_asin_num"
        ).withColumnRenamed(
            # 总bsr销量
            "st_bsr_orders",
            "bsr_orders"
        ).withColumnRenamed(
            # 总预估销量
            "st_zr_orders",
            "orders"
        ).withColumn(
            # 销量占比 新品销量占比
            "new_bsr_orders_proportion",
            F.round(F.col("new_asin_bsr_orders") / F.col("bsr_orders"), 3)
        ).withColumn(
            # 品牌垄断系数
            "brand_monopoly",
            F.ceil((F.col("top3_brand_bsr_orders") / F.col("bsr_orders")) * 1000) / 1000
        ).withColumn(
            # 卖家垄断系数
            "seller_monopoly",
            F.ceil((F.col("top3_seller_bsr_orders") / F.col("bsr_orders")) * 1000) / 1000
        ).withColumn(
            # ABA搜索词拆分的单词个数
            "st_word_num",
            self.st_word_count(self.sp_symbols)(F.col("search_term"))
        ).withColumn(
            # aba搜索词影视比例
            "movie_prop",
            F.round((F.col("asin_movie_type_count") / F.col("total_asin_num"))*100, 2)
        ).withColumn(
            # 影视标记类型 0:非影视; 1:0< 比例 <= 20%; 2: 20% < 比例 <= 50%; 3:50% < 比例
            "st_movie_label",
            F.when(
                (F.col("movie_prop") > 0) & (F.col("movie_prop") <= 20), F.lit(1)
            ).when(
                (F.col("movie_prop") > 20) & (F.col("movie_prop") <= 50), F.lit(2)
            ).when(
                (F.col("movie_prop") > 50), F.lit(3)
            ).otherwise(F.lit(0))
        )

        self.df_save = df_st_agg.join(
            self.df_st_detail, on=['search_term'], how='inner'
        ).join(
            self.df_st_key, on=['search_term'], how='inner'
        ).join(
            self.df_st_num_stats, on=['search_term'], how='left'
        ).join(
            self.df_st_market, on=['search_term'], how='left'
        ).join(
            self.df_st_volume_fba, on=['search_term'], how='left'
        ).join(
            self.df_st_brand, on=['search_term'], how='left'
        ).join(
            self.df_is_hidden_cate, on=['st_bsr_cate_1_id_new'], how='left'
        )
        self.df_st_detail.unpersist()
        self.df_st_key.unpersist()
        self.df_st_num_stats.unpersist()
        self.df_st_market.unpersist()
        self.df_st_volume_fba.unpersist()
        self.df_st_brand.unpersist()
        self.df_is_hidden_cate.unpersist()

    # 语种处理
    def handle_calc_lang(self):
        sql = """
            select 
                word, 
                langs 
            from big_data_selection.tmp_lang_word_frequency;
        """
        lang_word_list = self.spark.sql(sql).collect()
        # 转为map
        lang_word_map = {row['word']: row['langs'] for row in lang_word_list}

        self.df_save = self.df_save.withColumn(
            "lang",
            F.coalesce(udf_detect_phrase_reg(lang_word_map)(F.col("search_term")).getField("lang"), F.lit("other"))
        )

    def handle_column(self):
        # 入库前字段处理
        self.df_save = self.df_save.select(
            "id",
            "search_term",
            "rank",
            "category_id",
            "orders",
            "bsr_orders",
            "search_volume",
            "quantity_being_sold",
            F.round("st_ao_avg", 3).alias("st_ao_avg"),
            "st_ao_val_rate",
            "new_bsr_orders_proportion",
            "new_asin_proportion",
            F.round("page1_title_proportion", 3).alias("page1_title_proportion"),
            F.round("price_avg", 3).alias("price_avg"),
            F.round("total_comments_avg", 0).alias("total_comments_avg"),
            F.round("rating_avg", 3).alias("rating_avg"),
            F.round("weight_avg", 3).alias("weight_avg"),
            F.round("volume_avg", 3).alias("volume_avg"),
            F.round("title_length_avg", 0).alias("title_length_avg"),
            "st_num",
            "aadd_proportion",
            "sp_proportion",
            "fbm_proportion",
            "cn_proportion",
            "amzon_proportion",
            "most_proportion",
            "max_num",
            "asin1",
            "asin2",
            "asin3",
            F.round("click_share1", 3).alias("click_share1"),
            F.round("click_share2", 3).alias("click_share2"),
            F.round("click_share3", 3).alias("click_share3"),
            F.round("total_click_share", 3).alias("total_click_share"),
            F.round("conversion_share1", 3).alias("conversion_share1"),
            F.round("conversion_share2", 3).alias("conversion_share2"),
            F.round("conversion_share3", 3).alias("conversion_share3"),
            F.round("total_conversion_share", 3).alias("total_conversion_share"),
            "new_asin_num",
            "total_asin_num",
            "new_asin_orders",
            "new_asin_bsr_orders",
            "is_first_text",
            "is_ascending_text",
            "is_search_text",
            "top3_seller_orders",
            "top3_seller_bsr_orders",
            "top3_brand_orders",
            "top3_brand_bsr_orders",
            "page3_brand_num",
            "page3_seller_num",
            "brand_monopoly",
            "seller_monopoly",
            "max_num_asin",
            "is_self_max_num_asin",
            "is_new_market_segment",
            F.when(F.col('category_current_id').isNull(), F.col('category_id'))
                .otherwise(F.col('category_current_id')).alias('category_current_id'),
            "supply_demand",
            "market_cycle_type",
            "color_proportion",
            "gross_profit_fee_air",
            "gross_profit_fee_sea",
            "multi_color_proportion",
            "multi_size_proportion",
            "st_4_20_ao_avg",
            "st_4_20_ao_rate",
            "asin_aadd_count",
            "asin_video_count",
            "asin_fbm_count",
            "asin_cn_count",
            "asin_amazon_count",
            "asin_color_count",
            "asin_multi_color_count",
            "asin_multi_size_count",
            "st_word_num",
            "st_movie_label",
            "st_brand_label",
            "st_brand1",
            "st_category1",
            "st_brand2",
            "st_category2",
            "st_brand3",
            "st_category3",
            "st_bsr_cate_1_id_new",
            "st_bsr_cate_current_id_new",
            "st_crawl_date",
            "is_high_return_text",
            F.round("st_zr_page123_title_appear_rate", 3).alias("st_zr_page123_title_appear_rate"),
            F.round("st_sp_page123_title_appear_rate", 3).alias("st_sp_page123_title_appear_rate"),
            "st_competition_level",
            "amazon_monthly_sales",
            "st_zr_flow_proportion",
            "st_ao_val_matrix",
            "st_flow_proportion_matrix",
            "st_zr_counts",
            "st_sp_counts",
            "st_self_asin_counts",
            "st_self_asin_proportion",
            "lang",
            "asin_movie_type_count",
            "is_hidden_cate"
        )

        # 空值处理
        self.df_save = self.df_save.na.fill({
            "is_first_text": 0,
            "is_ascending_text": 0,
            "is_search_text": 0,
            "st_movie_label": 0,
            "st_brand_label": 0,
            "is_self_max_num_asin": 0,
            "market_cycle_type": 0,
            "is_new_market_segment": 0,
            "is_high_return_text": 0,
            "amazon_monthly_sales": 0,
            "is_hidden_cate": 0
        })

        # 日期字段补全
        self.df_save = self.df_save.withColumn(
            "created_time",
            F.date_format(F.current_timestamp(), 'yyyy-MM-dd HH:mm:SS')
        ).withColumn(
            "updated_time",
            F.date_format(F.current_timestamp(), 'yyyy-MM-dd HH:mm:SS')
        )

        # 预留字段补全
        self.df_save = self.df_save.withColumn(
            "re_string_field1", F.lit(None)
        )

        # 用户标记字段(已废弃,济苍直接填充)
        self.df_save = self.df_save.withColumn(
            "usr_mask_type", F.lit(None)
        ).withColumn(
            "usr_mask_progress", F.lit(None)
        )

        # 分区字段补全
        self.df_save = self.df_save.withColumn(
            "site_name", F.lit(self.site_name)
        ).withColumn(
            "date_type", F.lit(self.date_type)
        ).withColumn(
            "date_info", F.lit(self.date_info)
        )


if __name__ == '__main__':
    start_time = time.time()
    site_name = sys.argv[1]  # 参数1:站点
    date_type = sys.argv[2]  # 参数2:类型:week/4_week/month/quarter
    date_info = sys.argv[3]  # 参数3:年-周/年-月/年-季, 比如: 2022-1
    handle_obj = DwtAbaStAnalytics(site_name=site_name, date_type=date_type, date_info=date_info)
    handle_obj.run()
    end_time = time.time()
    consumer_time = end_time - start_time
    print("aba数据存储完毕, 执行时长为:" + str(consumer_time))