dwt_aba_last365.py 8.93 KB
Newer Older
chenyuanjie committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
import os
import sys

sys.path.append(os.path.dirname(sys.path[0]))

from utils.db_util import DBUtil
from utils.ssh_util import SSHUtil
from utils.common_util import CommonUtil, DateTypes

if __name__ == '__main__':
    site_name = CommonUtil.get_sys_arg(1, None)
    date_type = CommonUtil.get_sys_arg(2, None)
    date_info = CommonUtil.get_sys_arg(3, None)
    #  获取最后一个参数
    test_flag = CommonUtil.get_sys_arg(len(sys.argv) - 1, None)
    print(f"执行参数为{sys.argv}")

    if test_flag == 'test':
        db_type = 'postgresql_test'
        print("导出到测试库中")
    else:
        db_type = "postgresql_cluster"
        print("导出到PG集群中")

    year = date_info.split('-')[0]
    if date_type == DateTypes.year.name:
        export_tb_before = f"{site_name}_aba_last_year_{year}"
    elif date_type == DateTypes.month.name:
        export_tb_before = f"{site_name}_aba_last_365_day"
    else:
        raise Exception("DateType不合法")

    export_tb_rel = f"{export_tb_before}_copy"
    engine = DBUtil.get_db_engine(db_type, site_name)

    #  创建备份表
    with engine.connect() as connection:
        sql = f"""
            drop table if exists {export_tb_rel};
            create table if not exists {export_tb_rel} 
            (
                like {export_tb_before} including comments
            );
            ALTER TABLE {export_tb_rel} ALTER COLUMN st_movie_brand_label TYPE VARCHAR(20);
            ALTER TABLE {export_tb_rel} ALTER COLUMN total_appear_month TYPE VARCHAR(50);
        """
        print("================================执行sql================================")
        print(sql)
        connection.execute(sql)

    # 导出脚本
    sh = CommonUtil.build_export_sh(
        site_name=site_name,
        db_type=db_type,
        hive_tb="dwt_aba_last365",
        export_tb=export_tb_rel,
        col=[
            "id",
            "search_term",
            "category_id",
            "rank",
            "top_rank",
            "st_num1",
            "st_num2",
            "st_num3",
            "st_num4",
            "st_num5",
            "st_num6",
            "st_num7",
            "st_num8",
            "st_num9",
            "st_num10",
            "st_num11",
            "st_num12",
            "total_st_num",
            "bsr_orders1",
            "bsr_orders2",
            "bsr_orders3",
            "bsr_orders4",
            "bsr_orders5",
            "bsr_orders6",
            "bsr_orders7",
            "bsr_orders8",
            "bsr_orders9",
            "bsr_orders10",
            "bsr_orders11",
            "bsr_orders12",
            "market_cycle_type1",
            "market_cycle_type2",
            "market_cycle_type3",
            "market_cycle_type4",
            "market_cycle_type5",
            "market_cycle_type6",
            "market_cycle_type7",
            "market_cycle_type8",
            "market_cycle_type9",
            "market_cycle_type10",
            "market_cycle_type11",
            "market_cycle_type12",
            "search_volume1",
            "search_volume2",
            "search_volume3",
            "search_volume4",
            "search_volume5",
            "search_volume6",
            "search_volume7",
            "search_volume8",
            "search_volume9",
            "search_volume10",
            "search_volume11",
            "search_volume12",
            "st_ao_avg",
            "st_ao_val_rate",
            "supply_demand",
            "price_avg",
            "total_comments_avg",
            "rating_avg",
            "weight_avg",
            "volume_avg",
            "aadd_proportion",
            "sp_proportion",
            "fbm_proportion",
            "cn_proportion",
            "amzon_proportion",
            "top3_seller_orders",
            "top3_seller_bsr_orders",
            "top3_brand_orders",
            "top3_brand_bsr_orders",
            "page3_brand_num",
            "page3_seller_num",
            "max_num",
            "most_avg_proportion",
            "new_asin_num_avg_monopoly",
            "new_asin_bsr_orders_avg_monopoly",
            "total_asin_num",
            "orders",
            "bsr_orders",
            "created_time",
            "updated_time",
            "max_num_asin",
            "is_self_max_num_asin",
            "date_info",
            "gross_profit_fee_sea",
            "gross_profit_fee_air",
            "category_current_id",
            "color_proportion",
            "brand_monopoly",
            "seller_monopoly",
            "orders1",
            "orders2",
            "orders3",
            "orders4",
            "orders5",
            "orders6",
            "orders7",
            "orders8",
            "orders9",
            "orders10",
            "orders11",
            "orders12",
            "max_orders_month",
            "max_bsr_orders_month",
            "multi_color_avg_proportion",
            "multi_size_avg_proportion",
            "q1_bsr_orders",
            "q2_bsr_orders",
            "q3_bsr_orders",
            "q4_bsr_orders",
            "q1_orders",
            "q2_orders",
            "q3_orders",
            "q4_orders",
            "is_new_market_segment",
            "is_first_text",
            "is_ascending_text",
            "is_search_text",
            "st_word_num",
            "lang",
            "is_history_first_text",
            "history_first_appear_month",
            "first_appear_month",
            "sv_rising_rate",
            "sv_decline_rate",
            "sv_change_rate_flag",
            "st_movie_brand_label",
            "total_appear_month",
            "market_cycle_type",
            "rank_lastest",
            "rank_change_rate_lastest",
            "rank_rate_of_change_lastest"
        ],
        partition_dict={
            "site_name": site_name,
            "date_type": date_type,
            "date_info": date_info
        }
    )

    client = SSHUtil.get_ssh_client()
    SSHUtil.exec_command_async(client, sh, ignore_err=False)
    client.close()

    #  交换表名
    DBUtil.exchange_tb(engine,
                       source_tb_name=export_tb_rel,
                       target_tb_name=export_tb_before,
                       cp_index_flag=True)

    with engine.connect() as connection:
        sql = f"""
            ALTER TABLE {export_tb_before}
            ALTER COLUMN st_movie_brand_label TYPE INTEGER[]
            USING string_to_array(st_movie_brand_label, ',')::int[];

            ALTER TABLE {export_tb_before}
            ALTER COLUMN total_appear_month TYPE INTEGER[]
            USING string_to_array(total_appear_month, ',')::int[];

            alter table {export_tb_before} drop if exists keyword_tsv;
            alter table {export_tb_before} add column keyword_tsv tsvector generated always as (to_tsvector('english_amazonword', search_term)) STORED;
            drop index if exists {export_tb_before}_keyword_tsv_idx;
            create index {export_tb_before}_keyword_tsv_idx ON {export_tb_before} USING gin (keyword_tsv);
        """
        print("================================执行sql================================")
        print(sql)
        connection.execute(sql)

    if test_flag != 'test':
        if date_type == 'year':
            export_date_info = year
            export_tb_name = f'{site_name}_aba_last_year'
            export_date_type = date_type
            remark = 'ABA搜索词年表'
        elif date_type == 'month':
            export_date_info = date_info
            export_tb_name = f'{site_name}_aba_last_365_day'
            export_date_type = '365_day'
            remark = 'ABA搜索词年表(最近12月,每月更新)'
            with engine.connect() as connection:
                sql = f"""
                    insert into us_st_translate (search_term, st_lang)
                    select tmp.search_term, tmp.lang
                    from public.us_aba_last_365_day tmp
                    left join us_st_translate st on tmp.search_term = st.search_term
                    where st.search_term is null;
                """
                print("================================执行sql================================")
                print(sql)
                connection.execute(sql)
        else:
            raise Exception("DateType不合法")

        # 更新workflow_everyday
        engine = DBUtil.get_db_engine("mysql", "us")
        with engine.connect() as connection:
            sql = f"""
                replace into workflow_everyday (
                    site_name, report_date, status, status_val, table_name, date_type, page, is_end, remark, export_db_type
                )
                values (
                    '{site_name}', '{export_date_info}', '导出pg完成', 14, '{export_tb_name}', '{export_date_type}', 'AbaWordYear', '是', '{remark}', 'postgresql_cluster'
                );
            """
            print("================================更新workflow_everyday================================")
            print(sql)
            connection.execute(sql)

    print("success")