kafka_flow_asin_detail.py 59.7 KB
Newer Older
chenyuanjie committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
import os
import sys
import time
import traceback

sys.path.append("/opt/module/spark-3.2.0-bin-hadoop3.2/demo/py_demo/")

sys.path.append(os.path.dirname(sys.path[0]))  # 上级目录
from utils.templates import Templates
from pyspark.sql import functions as F
from pyspark.sql.types import *
from utils.db_util import DBUtil
from utils.common_util import CommonUtil
from utils.spark_util import SparkUtil
from datetime import datetime, timedelta
from functools import reduce
from utils.es_util import EsUtils
from pyspark.sql import Window
from pyspark.storagelevel import StorageLevel
from utils.DorisHelper import DorisHelper
from yswg_utils.common_df import get_node_first_id_df, get_first_id_from_category_desc_df
from yswg_utils.common_udf import udf_parse_bs_category, parse_weight_str, udf_extract_volume_dimensions, udf_get_package_quantity_with_flag as udf_get_package_quantity, udf_parse_seller_json


class KafkaFlowAsinDetail(Templates):
    def __init__(self, site_name='us', date_type="day", date_info='2022-10-01', consumer_type='latest', test_flag='normal', batch_size=100000):
        super().__init__()
        self.site_name = site_name
        self.date_type = date_type
        self.date_info = date_info
        self.consumer_type = consumer_type  # 消费实时还是消费历史
        self.test_flag = test_flag  # 正式环境跟测试环境
        self.year = str(self.date_info).split('-')[0]
        self.year_month = str(self.date_info).replace("-", "_")
        self.repartition_num = 80
        # kafka相关参数
        self.topic_name = f"{self.site_name}_asin_detail_month_{self.year_month}"
        self.batch_size = batch_size
        self.schema = self.init_schema()
        self.batch_size_history = 20000
        self.processing_time = 900 if self.site_name == 'us' else 600
        self.history_batch_id = 0
        # doris相关参数
        self.doris_db = "test" if self.test_flag == "test" else "selection"
        self.max_bought_month_table = f"{self.site_name}_asin_max_bought_month_info"
        self.parent_asin_latest_detail_table = f"{self.site_name}_parent_asin_latest_detail"
        self.asin_latest_detail_table = f"{self.site_name}_asin_latest_detail"
        # elasticsearch相关参数
        self.client = EsUtils.get_es_client()
        self.es_index_name = f"{self.topic_name}_test" if self.test_flag == 'test' else f"{self.topic_name}"
        self.es_index_alias_name = f"{self.site_name}_st_detail_last_4_week_test" if self.test_flag == 'test' else f"{self.site_name}_st_detail_last_4_week"
        self.es_index_body = EsUtils.get_es_body()
        self.es_options = EsUtils.get_es_options(self.es_index_name)
        self.db_save = 'kafka_flow_asin_detail'
        self.app_name = self.get_app_name()
        print(f"任务名称:{self.app_name}")
        # Spark实时消费相关参数
        self.spark = SparkUtil.get_stream_spark(app_name=self.app_name)
        self.check_path = f"/tmp/wangrui/{self.topic_name}_{self.consumer_type}_test" if self.test_flag == 'test' else f"/tmp/wangrui/{self.topic_name}_{self.consumer_type}"
        self.previous_date = self.get_previous_date(self)
        self.previous_two_date = self.get_previous_two_date(self)
        self.launch_time_interval_dict = self.get_launch_time_interval_dict()
        print("日期字典:", self.launch_time_interval_dict)
        self.initial_batch_id = self.get_initial_batch_id(self)
        print("当前消费的起始批次为: ", self.initial_batch_id)
        self.history_batch_id = self.initial_batch_id + 1
        # BSR分类解析模板
        self.pattern1_dict = {
            "us": "See Top 100 in ".lower(),
            "uk": "See Top 100 in ".lower(),
            "de": "Siehe Top 100 in ".lower(),
            "es": "Ver el Top 100 en ".lower(),
            "fr": "Voir les 100 premiers en ".lower(),
            "it": "Visualizza i Top 100 nella categoria ".lower(),
        }
        self.pattern_current_dict = {
            "us": "#(\d+) ",
            "uk": "(\d+) in ",
            "de": "(\d+) in ",
            "es": "(\d+) en ",
            "fr": "(\d+) en ",
            "it": "(\d+) in ",
        }
        # DataFrame初始化
        self.df_previous_flow_asin = self.spark.sql("select 1+1;")
        self.df_seller_info = self.spark.sql("select 1+1;")
        self.df_self_asin_info = self.spark.sql("select 1+1;")
        self.df_alarm_brand_info = self.spark.sql("select 1+1;")
        self.df_asin_label_info = self.spark.sql("select 1+1;")
        self.df_asin_measure = self.spark.sql("select 1+1;")
        self.df_bs_report = self.spark.sql("select 1+1;")
        self.df_asin_keep_date = self.spark.sql("select 1+1;")
        self.df_asin_bsr_end = self.spark.sql("select 1+1;")
        self.df_hide_category = self.spark.sql("select 1+1;")
        self.df_asin_new_cate = self.spark.sql("select 1+ 1;")
        self.df_user_package_num = self.spark.sql("select 1+1;")
        self.df_asin_category = self.spark.sql("select 1+1;")
        self.df_max_bought_month_info_update = self.spark.sql("select 1+1;")
        # udf函数注册
        package_schema = StructType([
            StructField("parse_package_quantity", IntegerType(), True),
            StructField("is_package_quantity_abnormal", IntegerType(), True),
        ])
        self.u_parse_package_quantity = self.spark.udf.register('u_parse_package_quantity', udf_get_package_quantity, package_schema)
        bs_category_schema = StructType([
            StructField('asin_bs_cate_1_id', StringType(), True),
            StructField('asin_bs_cate_current_id', StringType(), True),
            StructField('asin_bs_cate_1_rank', IntegerType(), True),
            StructField('asin_bs_cate_current_rank', IntegerType(), True),
        ])
        self.u_parse_bs_category = self.spark.udf.register('u_parse_bs_category', udf_parse_bs_category, bs_category_schema)
        weight_schema = StructType([
            StructField('weight', FloatType(), True),
            StructField('weight_type', StringType(), True)
        ])
        self.u_parse_weight = self.spark.udf.register('u_parse_weight', parse_weight_str, weight_schema)
        volume_schema = StructType([
            StructField("length", FloatType(), True),
            StructField("width", FloatType(), True),
            StructField("height", FloatType(), True),
            StructField("asin_volume_type", StringType(), True)
        ])
        self.u_parse_volume = self.spark.udf.register('u_parse_volume', udf_extract_volume_dimensions, volume_schema)
        seller_schema = StructType([
            StructField("buy_box_seller_type", IntegerType(), True),
            StructField("account_name", StringType(), True),
            StructField("account_id", StringType(), True)
        ])
        self.u_parse_seller_info = self.spark.udf.register('u_parse_seller_info', udf_parse_seller_json, seller_schema)

    @staticmethod
    def init_schema():
        schema = StructType([
            StructField("asin", StringType(), True),
            StructField("title", StringType(), True),
            StructField("img_url", StringType(), True),
            StructField("rating", DoubleType(), True),
            StructField("total_comments", IntegerType(), True),
            StructField("price", FloatType(), True),
            StructField("category", StringType(), True),
            StructField("launch_time", StringType(), True),
            StructField("volume", StringType(), True),
            StructField("page_inventory", IntegerType(), True),
            StructField("asin_vartion_list", ArrayType(ArrayType(StringType()), True), True),
            StructField("title_len", IntegerType(), True),
            StructField("img_num", IntegerType(), True),
            StructField("img_type", StringType(), True),
            StructField("activity_type", StringType(), True),
            StructField("one_two_val", StringType(), True),
            StructField("three_four_val", StringType(), True),
            StructField("five_six_val", StringType(), True),
            StructField("eight_val", StringType(), True),
            StructField("node_id", StringType(), True),
            StructField("five_star", IntegerType(), True),
            StructField("four_star", IntegerType(), True),
            StructField("three_star", IntegerType(), True),
            StructField("two_star", IntegerType(), True),
            StructField("one_star", IntegerType(), True),
            StructField("low_star", IntegerType(), True),
            StructField("together_asin", StringType(), True),
            StructField("brand", StringType(), True),
            StructField("ac_name", StringType(), True),
            StructField("material", StringType(), True),
            StructField("data_type", IntegerType(), True),
            StructField("weight_str", StringType(), True),
            StructField("seller_id", StringType(), True),
            StructField("variat_num", IntegerType(), True),
            StructField("best_sellers_rank", StringType(), True),
            StructField("best_sellers_herf", StringType(), True),
            StructField("account_name", StringType(), True),
            StructField("parentAsin", StringType(), True),
            StructField("asinUpdateTime", StringType(), True),
            StructField("all_best_sellers_herf", StringType(), True),
            StructField("image_view", IntegerType(), True),
            StructField("product_description", StringType(), True),
            StructField("describe", StringType(), True),
            StructField("buy_sales", StringType(), True),
            StructField("lob_asin_json", StringType(), True),
            StructField("seller_json", StringType(), True),
            StructField("customer_reviews_json", StringType(), True),
            StructField("img_list", StringType(), True),
            StructField("follow_sellers", IntegerType(), True)
        ])
        return schema

    @staticmethod
    def get_previous_date(self):
        self.df_date = self.spark.sql(f"select * from dim_date_20_to_30")
        df = self.df_date.toPandas()
        df_loc = df.loc[(df.year_month == f'{self.date_info}') & (df.day == 1)]
        cur_month_id = int(list(df_loc.id)[0])
        previous_date_id = cur_month_id - 1
        df_loc = df.loc[df.id == previous_date_id]
        previous_date = str(list(df_loc.year_month)[0])
        return previous_date

    @staticmethod
    def get_previous_two_date(self):
        self.df_date = self.spark.sql(f"select * from dim_date_20_to_30")
        df = self.df_date.toPandas()
        df_loc = df.loc[(df.year_month == f'{self.date_info}') & (df.day == 1)]
        cur_month_id = int(list(df_loc.id)[0])
        previous_two_date_id = cur_month_id - 40
        df_loc = df.loc[df.id == previous_two_date_id]
        prvious_two_date = str(list(df_loc.year_month)[0])
        return prvious_two_date

    @staticmethod
    def get_launch_time_interval_dict():
        cur_date = datetime.now().date()
        return {
            "one_month": (cur_date + timedelta(days=-30)).strftime('%Y-%m-%d'),
            "three_month": (cur_date + timedelta(days=-90)).strftime('%Y-%m-%d'),
            "six_month": (cur_date + timedelta(days=-180)).strftime('%Y-%m-%d'),
            "twelve_month": (cur_date + timedelta(days=-360)).strftime('%Y-%m-%d'),
            "twenty_four_month": (cur_date + timedelta(days=-720)).strftime('%Y-%m-%d'),
            "thirty_six_month": (cur_date + timedelta(days=-1080)).strftime('%Y-%m-%d')
        }

    @staticmethod
    def get_initial_batch_id(self):
        max_bought_month_batch_id_sql = f"""
            SELECT MAX(batch_id) as initial_batch_id from {self.doris_db}.{self.max_bought_month_table} WHERE date_info='{self.date_info}' AND consumer_type='{self.consumer_type}' 
               """
        df_max_bought_month_batch_id = DorisHelper.spark_import_with_sql(
            self.spark, query=max_bought_month_batch_id_sql)
        max_bought_month_batch_id = 0 if df_max_bought_month_batch_id.take(1)[0]['initial_batch_id'] is None else \
        df_max_bought_month_batch_id.take(1)[0]['initial_batch_id']
        return max_bought_month_batch_id

    # 1. 处理asin分类及排名以及排名类型字段
    def handle_asin_bs_category_info(self, df):
        df = df.withColumnRenamed("parentAsin", "parent_asin")
        cate_current_pattern = self.pattern_current_dict[self.site_name]
        cate_1_pattern = self.pattern1_dict[self.site_name]
        df = df.withColumn("asin_bs_sellers_rank_lower", F.lower("best_sellers_rank"))
        df = df.withColumn("asin_bs", self.u_parse_bs_category(
            "asin_bs_sellers_rank_lower", "best_sellers_herf", "all_best_sellers_herf", F.lit(cate_current_pattern), F.lit(cate_1_pattern)))
        df = df.withColumn("asin_bs_cate_1_id", df.asin_bs.getField("asin_bs_cate_1_id")) \
            .withColumn("asin_bs_cate_current_id", df.asin_bs.getField("asin_bs_cate_current_id")) \
            .withColumn("asin_bs_cate_1_rank", df.asin_bs.getField("asin_bs_cate_1_rank")) \
            .withColumn("asin_bs_cate_current_rank", df.asin_bs.getField("asin_bs_cate_current_rank")) \
            .drop("asin_bs", "asin_bs_sellers_rank_lower", "best_sellers_herf", "all_best_sellers_herf",
                  "best_sellers_rank")
        df = df.withColumn("rank_type", F.expr(""" 
        CASE WHEN asin_bs_cate_1_rank IS NOT NULL AND asin_bs_cate_1_rank BETWEEN 0 AND 1000 THEN 1 
        WHEN asin_bs_cate_1_rank BETWEEN 1000 AND 5000 THEN 2 WHEN asin_bs_cate_1_rank BETWEEN 5000 AND 10000 THEN 3 
        WHEN asin_bs_cate_1_rank BETWEEN 10000 AND 20000 THEN 4 WHEN asin_bs_cate_1_rank BETWEEN 20000 AND 30000 THEN 5 
        WHEN asin_bs_cate_1_rank BETWEEN 30000 AND 50000 THEN 6 WHEN asin_bs_cate_1_rank BETWEEN 50000 AND 70000 THEN 7 
        WHEN asin_bs_cate_1_rank >= 70000 THEN 8 ELSE 0 END"""))
        return df

    # 2. 利用node_id以及分类描述进行分类补充(此时无排名信息)
    def handle_asin_category_supplement(self, df):
        df = df.join(self.df_asin_new_cate, on=['node_id'], how='left')
        df = df.withColumn("asin_bs_cate_current_id", F.coalesce(F.col("asin_bs_cate_current_id"), F.col("node_id"))). \
            withColumn("asin_bs_cate_1_id", F.coalesce(F.col("asin_bs_cate_1_id"), F.col("category_first_id"))). \
            drop("category_first_id", "node_id")
        df_with_category = df.filter("asin_bs_cate_1_id is null and category is not null").select("asin", "category")
        df_with_category = df_with_category.withColumn(
            "category_split", F.split(F.col("category"), "›")
        ).withColumn(
            "category_first_name", F.lower(F.col("category_split").getItem(0))
        ).drop("category_split", "category")
        df_with_category = df_with_category.join(self.df_asin_category, on=['category_first_name'], how='inner')
        df_with_category = df_with_category.withColumnRenamed("category_first_id", "category_first_id_with_name").drop("category_first_name")
        df = df.join(df_with_category, on=['asin'], how='left')
        df = df.withColumn("asin_bs_cate_1_id", F.coalesce(F.col("asin_bs_cate_1_id"), F.col("category_first_id_with_name"))).drop("category_first_id_with_name")
        return df

    # 3. 处理bsr销量、价格类型字段以及BSR销售额信息
    def handle_asin_bsr_orders(self, df):
        df = df.join(self.df_bs_report, on=['asin_bs_cate_1_id', 'asin_bs_cate_1_rank'], how='left')
        df = df.withColumn("price_type", F.expr("""
        CASE WHEN price IS NOT NULL AND price > 0 AND price < 10 THEN 1 WHEN price >= 10 AND price < 15 THEN 2 
        WHEN price >= 15 AND price < 20 THEN 3 WHEN price >= 20 AND price < 30 THEN 4 
        WHEN price >= 30 AND price < 50 THEN 5 WHEN price >= 50 THEN 6 ELSE 0 END""")).\
            withColumn("bsr_orders_sale", F.round(F.col("bsr_orders") * F.col("price"), 2))
        return df

    # 4.解析Make-It-A-Bundle信息
    def handle_asin_lob_info(self, df):
        df = df.withColumn("is_contains_lob_info",
                           F.when(F.col("lob_asin_json").isNotNull(), F.lit(1)).otherwise(F.lit(0)))
        df_parsed = df.withColumn("parse_asin_lob",
                                  F.when(F.col("is_contains_lob_info") == 1, F.from_json("lob_asin_json", "array<struct<lob_asin:string>>")))
        df_result = df_parsed.withColumn("asin_lob_info", F.expr("transform(parse_asin_lob, x -> x.lob_asin)"))
        df = df_result.withColumn(
            "asin_lob_info", F.regexp_replace(F.concat_ws(",", "asin_lob_info"), "[{}]", "")).drop(
            "parse_asin_lob", "lob_asin_json")
        return df

    # 5. 处理配送方式、卖家所在地以及卖家所在地类型
    def handle_asin_buy_box_seller_type(self, df):
        df = df.withColumn("seller_json_parsed", self.u_parse_seller_info(df.seller_json))
        df = df.withColumn("buy_box_seller_type", df.seller_json_parsed.buy_box_seller_type).withColumn(
            "account_name", df.seller_json_parsed.account_name).drop("seller_json_parsed")
        df = df.join(self.df_seller_info, on=['seller_id'], how='left')
        df = df.withColumn("site_name_type", F.expr("""
        CASE WHEN buy_box_seller_type = 1 THEN 4 
        WHEN buy_box_seller_type != 1 AND seller_country_name is not null AND seller_country_name like '%US%' THEN 1 
        WHEN buy_box_seller_type != 1 AND seller_country_name is not null AND seller_country_name like '%CN%' THEN 2 
        ELSE 3 END"""))
        return df

    # 6. 处理asin基础属性信息(长宽高重量等)
    def handle_asin_basic_attribute_info(self, df):
        # 1.解析ASIN重量相关信息
        df = df.withColumn("weight_str", F.lower(F.col("weight_str"))).withColumn("asin_weight", self.u_parse_weight("weight_str", F.lit(self.site_name))).drop("weight_str")
        df = df.withColumn(
            "weight", F.when(df.asin_weight.getField("weight_type") == 'pounds', df.asin_weight.getField("weight")).otherwise(F.lit(0))).drop("asin_weight")
        # 2.处理重量类型
        df = df.withColumn("weight_type", F.expr("""
        CASE WHEN weight BETWEEN 0 AND 0.2 THEN 1 WHEN weight BETWEEN 0.2 AND 0.4 THEN 2 
        WHEN weight BETWEEN 0.4 AND 0.6 THEN 3 WHEN weight BETWEEN 0.6 AND 1 THEN 4 
        WHEN weight BETWEEN 1 AND 2 THEN 5 WHEN weight >= 2 THEN 6 ELSE 0 END"""))
        # 3.解析ASIN体积相关信息
        df = df.withColumn("asin_volume", self.u_parse_volume("volume"))
        df = df.withColumn("asin_volume_type", df.asin_volume.getField("asin_volume_type")) \
            .withColumn("asin_length", F.when(F.col("asin_volume_type") == 'inches', df.asin_volume.getField("length"))) \
            .withColumn("asin_width", F.when(F.col("asin_volume_type") == 'inches', df.asin_volume.getField("width"))) \
            .withColumn("asin_height", F.when(F.col("asin_volume_type") == 'inches', df.asin_volume.getField("height"))) \
            .drop("asin_volume", "asin_volume_type")
        # 4.获取体积重/毛重相关信息
        df = df.withColumn(
            "asin_weight_ratio", F.when(
                F.col("asin_length").isNotNull() & (F.col("asin_width").isNotNull()) &
                (F.col("asin_height").isNotNull()) &
                (F.col("weight") > 0), F.round(F.col("asin_length") * F.col("asin_width") * F.col("asin_height") * 3.2774128 / (F.col("weight") * 453.59), 3))
            .otherwise(F.lit(-1)))
        # 5.处理尺寸类型
        if self.site_name == 'us':
            expr_str = f"""
            CASE WHEN weight > 0 AND weight * 16 <= 16 AND asin_length > 0 AND asin_length <= 15 AND asin_width > 0 AND asin_width <= 12 AND asin_height > 0 AND asin_height <= 0.75 THEN 1 
            WHEN weight > 0 AND weight <= 20 AND asin_length > 0 AND asin_length <= 18 AND  asin_width > 0 AND asin_width <= 14 AND asin_height > 0 AND asin_height <= 8 THEN 2 
            WHEN weight > 0 AND weight <= 70 AND asin_length > 0 AND asin_length <= 60 AND asin_width > 0 AND asin_width <= 30 AND asin_length + asin_length + (asin_width + asin_height) * 2 <= 130  THEN 3 
            WHEN weight > 0 AND weight <= 150 AND asin_length > 0 AND asin_length <= 108 AND asin_length + asin_length + (asin_width + asin_height) * 2 <= 130  THEN 4 
            WHEN weight > 0 AND weight <= 150 AND asin_length > 0 AND asin_length <= 108 AND asin_length + asin_length + (asin_width + asin_height) * 2 <= 165  THEN 5 
            WHEN weight > 150 AND asin_length > 108 AND asin_length + asin_length + (asin_width + asin_height) * 2 > 165  THEN 6 ELSE 0 END"""
        else:
            expr_str = f"""
            CASE WHEN weight > 0 AND weight <= 100 AND asin_length > 0 AND asin_length <= 20 AND asin_width > 0 AND asin_width <= 15 AND asin_height > 0 AND asin_height <= 1 THEN 1 
            WHEN weight > 0 AND weight <= 500 AND asin_length > 0 AND asin_length <= 33 AND asin_width > 0 AND asin_width <= 23 AND asin_height > 0 AND asin_height <= 2.5 THEN 2 
            WHEN weight > 0 AND weight <= 1000 AND asin_length > 0 AND asin_length <= 33 AND asin_width > 0 AND asin_width <= 23 AND asin_height > 0 AND asin_height <= 5 THEN 3 
            WHEN weight > 0 AND weight <= 12000 AND asin_length > 0 AND asin_length <= 45 AND asin_width > 0 AND asin_width <= 34 AND asin_height > 0 AND asin_height <= 26 THEN 4 
            WHEN weight > 0 AND weight <= 2000 AND asin_length > 0 AND asin_length <= 61 AND asin_width > 0 AND asin_width <= 46 AND asin_height > 0 AND asin_height <= 46 THEN 5 
            WHEN asin_length > 0 AND asin_length <= 150 AND asin_length + asin_length + (asin_width + asin_height) <= 300 THEN 6 
            WHEN asin_length > 150 AND asin_length + asin_length + (asin_width + asin_height) > 300 THEN 7 ELSE 0 END"""
        df = df.withColumn("size_type", F.expr(expr_str)).drop("asin_length", "asin_width", "asin_height")
        return df

    # 7. 处理asin图片信息
    def handle_asin_img_info(self, df):
        img_schema = ArrayType(ArrayType(StringType()))
        df = df.withColumn("img_list", F.from_json(F.col("img_list"), img_schema))
        df_with_img = df.filter(F.size("img_list") > 0).select("asin", "img_list")
        df_with_img_attribute = df_with_img.select(
            "asin", F.explode("img_list").alias("img_attributes")
        ).select(
            "asin", F.col("img_attributes")[1].alias("img_url"), F.col("img_attributes")[2].alias("img_order_by"),
            F.col("img_attributes")[3].alias("data_type")
        )
        df_with_img_attribute_agg = df_with_img_attribute.groupby("asin").agg(
            F.to_json(F.collect_list(F.struct(F.col("img_url"), F.col("img_order_by"), F.col("data_type")))).alias(
                "img_info")
        )
        df = df.drop("img_list")
        df = df.join(df_with_img_attribute_agg, on=['asin'], how='left')
        return df

    # 8. 处理变体相关(ao及母体相关,自然占比及母体自然占比,各类型数量,月销信息等)
    def handle_asin_measure(self, df):
        df = CommonUtil.get_asin_variant_attribute(df_asin_detail=df, df_asin_measure=self.df_asin_measure,
                                                   partition_num=self.repartition_num, use_type=1)
        # 是否数量变体类型和ao的类型
        df = df.withColumn("quantity_variation_type", F.expr("""
        CASE WHEN size is not null and size != '' and lower(size) like '%quantity%' THEN 1 ELSE 0 END""")).withColumn(
            "ao_val_type", F.expr("""
            CASE WHEN asin_ao_val BETWEEN 0 AND 0.1 THEN 1 WHEN asin_ao_val BETWEEN 0.1 AND 0.2 THEN 2 
            WHEN asin_ao_val BETWEEN 0.2 AND 0.4 THEN 3 WHEN asin_ao_val BETWEEN 0.4 AND 0.8 THEN 4 
            WHEN asin_ao_val BETWEEN 0.8 AND 1.2 THEN 5 WHEN asin_ao_val BETWEEN 1.2 AND 2 THEN 6 
            WHEN asin_ao_val >= 2 THEN 7 ELSE 0 END"""))
        df = df.withColumnRenamed("asin_zr_counts", "zr_counts").withColumnRenamed("asin_ao_val", "ao_val") \
            .withColumnRenamed("asin_zr_flow_proportion", "zr_flow_proportion") \
            .withColumnRenamed("asin_amazon_orders", "asin_bought_month").drop("asin_st_counts", "asin_adv_counts")
        # 获取parent_asin下最新ASIN信息
        df_parent_asin_info = df.filter("parent_asin is not null").select("parent_asin", "asin_vartion_list", "asinUpdateTime")
        parent_asin_window = Window.partitionBy(['parent_asin']).orderBy(
            F.desc_nulls_last("asinUpdateTime")
        )
        df_parent_asin_info = df_parent_asin_info.withColumn("u_rank", F.row_number().over(window=parent_asin_window))
        df_parent_asin_info = df_parent_asin_info.repartition(self.repartition_num)
        df_parent_asin_info = df_parent_asin_info.filter("u_rank = 1").drop("u_rank")
        df_asin_variat = df_parent_asin_info.filter(F.size("asin_vartion_list") > 0).\
            select("parent_asin", "asinUpdateTime", F.explode("asin_vartion_list").alias("variant_attribute")).\
            select("parent_asin", F.col("asinUpdateTime").alias("asin_crawl_date"),
                   F.col("variant_attribute")[0].alias("asin"), F.col("variant_attribute")[1].alias("color"),
                   F.col("variant_attribute")[3].alias("size"), F.col("variant_attribute")[5].alias("style"))
        df_asin_variat_agg = df_asin_variat.groupby(['parent_asin']).agg(
            F.first("asin_crawl_date").alias("asin_crawl_date"),
            F.concat_ws(',', F.collect_list("asin")).alias("variation_info"),
            F.to_json(F.collect_list(F.struct(F.col("color"), F.col("size"), F.col("style")))).alias("attr_info")
        )
        print("导出父ASIN最新变体信息到doris:")
        df_doris = df_asin_variat_agg.select(
            "parent_asin", F.lit(self.date_info).alias("date_info"), "asin_crawl_date", "variation_info", "attr_info")
        table_columns = "parent_asin, date_info, asin_crawl_date, variation_info, attr_info"
        DorisHelper.spark_export_with_columns(df_save=df_doris, db_name=self.doris_db, table_name=self.parent_asin_latest_detail_table, table_columns=table_columns)
        df_doris.unpersist()
        return df

    # 9. 提取打包数量字段
    def handle_asin_package_quantity(self, df):
        df = df.withColumn(
            "variat_attribute", F.concat_ws("&&&%", F.col("color"), F.col("style"), F.col("size"), F.col("material")))
        df = df.withColumn("title_parse", self.u_parse_package_quantity(df.title)).withColumn(
            "variat_parse", self.u_parse_package_quantity(df.variat_attribute))
        df = df.withColumn("title_package_quantity", df.title_parse.getField("parse_package_quantity")). \
            withColumn("variat_package_quantity", df.variat_parse.getField("parse_package_quantity")). \
            withColumn("title_package_quantity_is_abnormal", df.title_parse.getField("is_package_quantity_abnormal")). \
            withColumn("variat_package_quantity_is_abnormal", df.variat_parse.getField("is_package_quantity_abnormal")). \
            drop("title_parse", "variat_parse", "variat_attribute")
        df = df.withColumn(
            "package_quantity", F.expr("""
            CASE WHEN title_package_quantity is null and variat_package_quantity is not null THEN variat_package_quantity 
            WHEN title_package_quantity is not null THEN title_package_quantity ELSE 1 END""")
        ).withColumn(
            "is_package_quantity_abnormal", F.expr("""
            CASE WHEN title_package_quantity is null  and variat_package_quantity is not null THEN variat_package_quantity_is_abnormal 
            WHEN title_package_quantity is not null THEN title_package_quantity_is_abnormal ELSE 2 END""")
        ).drop("title_package_quantity", "variat_package_quantity", "title_package_quantity_is_abnormal", "variat_package_quantity_is_abnormal")
        df = df.withColumn("title", F.lower(F.col("title")))
        df = df.join(self.df_user_package_num, on=['asin', 'title'], how='left')
        df = df.withColumn("package_quantity", F.coalesce(F.col("user_package_num"), F.col("package_quantity"))). \
            withColumn(
            "is_package_quantity_abnormal", F.coalesce(F.col("user_is_package_quantity_abnormal"), F.col("is_package_quantity_abnormal"))
        ).drop("user_package_num", "user_is_package_quantity_abnormal")
        return df

    # 10. 处理品牌标签、是否告警品牌、处理asin_lqs_rating信息
    def handle_asin_lqs_and_brand(self, df):
        # 1.品牌标签以及是否告警品牌
        df = df.withColumn("is_brand_label", F.expr("""CASE WHEN brand is not null THEN 1 ELSE 0 END"""))
        df = df.withColumn("brand", F.lower("brand"))
        df = df.join(self.df_alarm_brand_info, on=['brand'], how='left')
        df = df.withColumn("is_alarm_brand",
                           F.when(F.col("is_alarm_brand").isNotNull(), F.col("is_alarm_brand")).otherwise(F.lit(0)))
        # 2. lqs评分
        df = df.withColumn("category_node_rating",
                           F.expr(f"""CASE WHEN asin_bs_cate_current_id is not null THEN 1 ELSE 0 END""")) \
            .withColumn("zr_rating", F.expr(f"""CASE WHEN zr_counts > 0 THEN 0.5 ELSE 0 END""")) \
            .withColumn("sp_rating", F.expr(f"""CASE WHEN sp_counts > 0 THEN 1 ELSE 0 END""")) \
            .withColumn("a_add_rating", F.expr(f"""CASE WHEN img_type like '%3%' THEN 1 ELSE 0 END""")) \
            .withColumn("video_rating", F.expr(f"""CASE WHEN img_type like '%2%' THEN 0.5 ELSE 0 END""")) \
            .withColumn("brand_rating", F.expr(f"""CASE WHEN is_brand_label = 1 THEN 0.2 ELSE 0 END""")) \
            .withColumn("product_describe_rating",
                        F.expr(f"""CASE WHEN product_description is not null THEN 0.2 ELSE 0 END""")) \
            .withColumn("highlight_rating", F.expr(f"""
            CASE WHEN describe is not null AND size(split(describe, '\\|-\\|')) <= 4 THEN size(split(describe, '\\|-\\|')) * 0.4 
            WHEN describe is not null AND size(split(describe, '\\|-\\|')) > 4 THEN 1.6 ELSE 0 END""")) \
            .withColumn("title_len_rating", F.expr(f"""CASE WHEN title_len >= 50 AND title_len <=200 THEN 0.5 ELSE 0 END""")) \
            .withColumn("title_brand_rating", F.expr(f"""
            CASE WHEN brand is not null AND lower(regexp_replace(title, '[^a-zA-Z0-9\\s]', '')) LIKE lower(regexp_replace(brand, '[^a-zA-Z0-9\\s]', '')) || '%' THEN 0.5 
            ELSE 0 END""")) \
            .withColumn("img_num_rating", F.expr(f"""
            CASE WHEN img_num <= 4 THEN img_num * 0.5 WHEN img_num >4 THEN 2 ELSE 0 END""")) \
            .withColumn("img_enlarge_rating", F.expr(f"""CASE WHEN image_view = 1 THEN 0.5 ELSE 0 END"""))
        df = df.withColumn(
            "asin_lqs_rating",
            (F.col("category_node_rating") + F.col("zr_rating") + F.col("sp_rating") + F.col("a_add_rating") +
             F.col("video_rating") + F.col("brand_rating") + F.col("product_describe_rating") +
             F.col("highlight_rating") + F.col("title_len_rating") + F.col("title_brand_rating") +
             F.col("img_num_rating") + F.col("img_enlarge_rating")).cast("double")).withColumn(
            "asin_lqs_rating_detail", F.to_json(
                F.struct(F.col("category_node_rating"), F.col("zr_rating"), F.col("sp_rating"), F.col("a_add_rating"),
                         F.col("video_rating"), F.col("brand_rating"), F.col("product_describe_rating"),
                         F.col("highlight_rating"), F.col("title_len_rating"), F.col("title_brand_rating"),
                         F.col("img_num_rating"), F.col("img_enlarge_rating")))
        )
        df = df.drop("product_description", "describe", "image_view", "category_node_rating", "zr_rating", "sp_rating",
                     "a_add_rating", "video_rating", "brand_rating", "product_describe_rating", "highlight_rating",
                     "title_len_rating", "title_brand_rating", "img_num_rating", "img_enlarge_rating")
        return df

    # 11. 通过ASIN页面信息处理(评分类型、上架时间类型、电影标签、是否内部asin、是否隐藏分类、有效类型、必需ASIN、asin_type)
    def handle_asin_detail_all_type(self, df):
        # 1. 评分类型
        df = df.withColumn("rating_type", F.expr("""
        CASE WHEN rating >= 4.5 THEN 1 WHEN rating >= 4 AND rating < 4.5 THEN 2 WHEN rating >= 3.5 AND rating < 4 THEN 3 
        WHEN rating >= 3 AND rating < 3.5 THEN 4 WHEN rating < 3 AND rating >= 0 THEN 5 ELSE 0 END"""))
        # 2. 上架时间类型
        df = df.join(self.df_asin_keep_date, on=['asin'], how='left')
        df = df.withColumn("launch_time", F.when(F.col("launch_time").isNull(), F.col("new_launch_time")).otherwise(
            F.col("launch_time")))
        one_month = self.launch_time_interval_dict['one_month']
        three_month = self.launch_time_interval_dict['three_month']
        six_month = self.launch_time_interval_dict['six_month']
        twelve_month = self.launch_time_interval_dict['twelve_month']
        twenty_four_month = self.launch_time_interval_dict['twenty_four_month']
        thirty_six_month = self.launch_time_interval_dict['thirty_six_month']
        expr_str = f"""
        CASE WHEN launch_time >= '{one_month}' THEN 1 
        WHEN launch_time >= '{three_month}' AND launch_time < '{one_month}' THEN 2 
        WHEN launch_time >= '{six_month}' AND launch_time < '{three_month}' THEN 3 
        WHEN launch_time >= '{twelve_month}' AND launch_time < '{six_month}' THEN 4 
        WHEN launch_time >= '{twenty_four_month}' AND launch_time < '{twelve_month}' THEN 5 
        WHEN launch_time >= '{thirty_six_month}' AND launch_time < '{twenty_four_month}' THEN 6 
        WHEN launch_time < '{thirty_six_month}' THEN 7 ELSE 0 END"""
        df = df.withColumn("launch_time_type", F.expr(expr_str))
        # 3. 电影标签
        movie_label_list = ['prime video', 'dvd', 'blu-ray', 'kindle', 'app', 'paperback', 'audible audiobook',
                            'kindle edition', 'kindle & comixology', 'hardcover', 'comic', 'multi-format', '4k',
                            'library binding', 'vinyl', 'audio cd', 'mp3 music', 'single issue magazine',
                            'print magazine', 'unknown binding']
        df = df.join(self.df_asin_label_info, on=['asin'], how='left')
        condition = reduce(
            lambda acc, keyword: acc | F.expr(f"exists(asin_label_list, x -> x like '%{keyword}%')"),
            movie_label_list,
            F.lit(False)
        )
        df = df.withColumn("is_movie_label", condition.cast("int")).drop("asin_label_list")
        # 4. 是否内部asin、是否隐藏分类
        df = df.join(self.df_self_asin_info, on=['asin'], how='left')
        df = df.withColumn(
            "is_self_asin", F.when(F.col("is_self_asin").isNotNull(), F.col("is_self_asin")).otherwise(F.lit(0)))
        df = df.join(self.df_hide_category, on=['asin_bs_cate_current_id'], how='left')
        df = df.na.fill({"hide_flag": 0})
        df = df.withColumn("is_hide_asin", F.expr("""
        CASE WHEN hide_flag = 1 THEN 1 WHEN asin_bs_cate_1_id = 'grocery' and asin_bs_cate_current_id != '6492272011' THEN 1  
        WHEN asin_bs_cate_current_id in ('21393128011', '21377129011', '21377127011', '21377130011', '21388218011', '21377132011') THEN 1 
        ELSE 0 END""")).drop("hide_flag")
        # 5. 有效类型
        df = df.join(self.df_asin_bsr_end, on=['asin_bs_cate_1_id'], how='left')
        df = df.withColumn("bsr_type", F.expr("""
        CASE WHEN limit_rank is null and asin_bs_cate_1_rank <= 500000 THEN 1 WHEN limit_rank is not null and asin_bs_cate_1_rank <= limit_rank THEN 1 ELSE 0 END"""
                                              )).drop("limit_rank")
        # 5. 是否必需ASIN
        df = df.withColumn("is_need_asin", F.expr("""
        CASE WHEN asin_bs_cate_1_id in ('mobile-apps', 'audible', 'books', 'music', 'dmusic', 'digital-text', 'magazines', 'movies-tv', 'software', 'videogames', 'amazon-devices', 'boost', 'us-live-explorations', 'amazon-renewed') THEN 1 
        WHEN asin NOT LIKE 'B0%' THEN 1 
        ELSE 0 END"""))
        # 6. asin_type
        df = df.withColumn("asin_type", F.expr("""
        CASE WHEN is_self_asin=1 THEN 1 WHEN is_need_asin=1 THEN 2 WHEN is_hide_asin=1 THEN 3 ELSE 0 END"""
        )).drop("is_self_asin", "is_need_asin", "is_hide_asin")
        return df

    # 12. 处理变化率相关字段
    def handle_asin_attribute_change(self, df):
        # 处理ASIN维度的变化率信息
        df = df.join(self.df_previous_flow_asin, on=['asin'], how='left')
        columns_to_change = [
            ("ao_val", "previous_asin_ao_val", "ao"),
            ("price", "previous_asin_price", "price"),
            ("asin_bs_cate_1_rank", "previous_first_category_rank", "rank"),
            ("bsr_orders", "previous_asin_bsr_orders", "bsr_orders"),
            ("rating", "previous_asin_rating", "rating"),
            ("total_comments", "previous_asin_total_comments", "comments"),
            ("variat_num", "previous_asin_variation_num", "variation"),
            ("bsr_orders_sale", "previous_sales", "sales")
        ]

        def calculate_change(current_col, previous_col):
            rise_col = F.col(current_col) - F.col(previous_col)
            change_col = F.when((F.col(previous_col).isNotNull()) & (F.col(previous_col) != 0),
                                F.round((F.col(current_col) - F.col(previous_col)) / F.col(previous_col), 4)
                                ).otherwise(None)
            return rise_col, change_col

        for current_col, previous_col, suffix in columns_to_change:
            rise_col, change_col = calculate_change(current_col, previous_col)
            if suffix == 'ao':
                df = df.withColumn(f"{suffix}_rise", F.round(rise_col, 3))
            elif suffix in ['price', 'sales']:
                df = df.withColumn(f"{suffix}_rise", F.round(rise_col, 2))
            elif suffix == 'rating':
                df = df.withColumn(f"{suffix}_rise", F.round(rise_col, 1))
            else:
                df = df.withColumn(f"{suffix}_rise", rise_col.cast(IntegerType()))
            df = df.withColumn(f"{suffix}_change", F.round(change_col, 4))
            df = df.drop(previous_col)
        return df

    # 13. 字段标准化
    def handle_column_name(self, df):
        df = df.withColumnRenamed("asin_bs_cate_1_id", "category_first_id")\
            .withColumnRenamed("asin_bs_cate_current_id", "category_id") \
            .withColumnRenamed("asin_bs_cate_1_rank", "first_category_rank")\
            .withColumnRenamed("asin_bs_cate_current_rank", "current_category_rank") \
            .withColumnRenamed("variat_num", "variation_num")\
            .withColumnRenamed("seller_id", "account_id").withColumnRenamed("seller_country_name", "site_name") \
            .withColumnRenamed("asinUpdateTime", "asin_crawl_date")\
            .withColumnRenamed("customer_reviews_json", "product_features")\
            .withColumn("collapse_asin", F.coalesce(F.col("parent_asin"), F.col("asin")))\
            .withColumn("bsr_best_orders_type", F.lit(-1))
        df_save = df.select("asin", "ao_val", "zr_counts", "sp_counts", "sb_counts", "vi_counts", "bs_counts", "ac_counts",
                       "tr_counts", "er_counts", "bsr_orders", "bsr_orders_sale", "title", "title_len", "price",
                       "rating", "total_comments", "buy_box_seller_type", "page_inventory", "volume", "weight", "color",
                       "size", "style", "material", "launch_time", "img_num", "parent_asin", "img_type", "img_url",
                       "activity_type", "one_two_val", "three_four_val", "five_six_val", "eight_val", "brand",
                       "variation_num", "one_star", "two_star", "three_star", "four_star", "five_star", "low_star",
                       "together_asin", "account_name", "account_id", "rank_rise", "rank_change", "ao_rise",
                       "ao_change", "price_rise", "price_change", "rating_rise", "rating_change", "comments_rise",
                       "comments_change", "bsr_orders_rise", "bsr_orders_change", "sales_rise", "sales_change",
                       "variation_rise", "variation_change", "size_type", "rating_type", "site_name_type",
                       "weight_type", "launch_time_type", "ao_val_type", "rank_type", "price_type", "bsr_type",
                       "bsr_best_orders_type", "quantity_variation_type", "package_quantity", "is_movie_label",
                       "is_brand_label", "is_alarm_brand", "asin_type", "asin_crawl_date", "category_first_id",
                       "category_id", "first_category_rank", "current_category_rank", "asin_weight_ratio",
                       "site_name", "asin_bought_month", "asin_lqs_rating", "asin_lqs_rating_detail",
                       "asin_lob_info", "is_contains_lob_info", "is_package_quantity_abnormal", "category",
                       "zr_flow_proportion", "matrix_flow_proportion", "matrix_ao_val", "product_features", "img_info",
                       "collapse_asin", F.col("follow_sellers").alias("follow_sellers_count"), "seller_json")
        df_save = df_save.na.fill(
            {"zr_counts": 0, "sp_counts": 0, "sb_counts": 0, "vi_counts": 0, "bs_counts": 0, "ac_counts": 0,
             "tr_counts": 0, "er_counts": 0, "title_len": 0, "total_comments": 0, "variation_num": 0, "img_num": 0,
             "one_two_val": 0.0, "three_four_val": 0.0, "five_six_val": 0.0, "eight_val": 0.0,
             "one_star": 0, "two_star": 0, "three_star": 0, "four_star": 0, "five_star": 0, "low_star": 0,
             "size_type": 0, "rating_type": 0, "site_name_type": 0, "weight_type": 0, "launch_time_type": 0,
             "ao_val_type": 0, "rank_type": 0, "price_type": 0, "quantity_variation_type": 0, "package_quantity": 1,
             "is_movie_label": 0, "is_brand_label": 0, "is_alarm_brand": 0, "asin_lqs_rating": 0.0, "follow_sellers_count": -1}
        )
        print("asin的标准信息:")
        df_save.show(10, truncate=False)
        return df_save

    def read_data(self):
        print("1. 读取上个维度的flow_asin")
        sql = f"""
               select asin, asin_ao_val as previous_asin_ao_val, asin_price as previous_asin_price, 
               variation_num as previous_asin_variation_num, asin_rating as previous_asin_rating, 
               asin_total_comments as previous_asin_total_comments, first_category_rank as previous_first_category_rank, 
               bsr_orders as previous_asin_bsr_orders, sales as previous_sales 
               from dwt_flow_asin where site_name = '{self.site_name}' and date_type = '{self.date_type}'
               and date_info = '{self.previous_date}'
               """
        print("sql=", sql)
        self.df_previous_flow_asin = self.spark.sql(sqlQuery=sql)
        if self.df_previous_flow_asin.count() <= 1:
            print("该历史节点数据不全,调整到上上个月")
            sql = f"""
               select asin, first_category_rank as previous_first_category_rank,
               round(asin_ao_val, 3) as previous_asin_ao_val, asin_price as previous_asin_price,
               bsr_orders as previous_bsr_orders, asin_rating as previous_asin_rating,
               asin_total_comments as previous_asin_total_comments, sales as previous_sales,
               variation_num as previous_variation_num
               from dwt_flow_asin where site_name = '{self.site_name}' and date_type = '{self.date_type}'
               and date_info = '{self.previous_two_date}'
               """
            print("sql=", sql)
            self.df_previous_flow_asin = self.spark.sql(sqlQuery=sql)
        self.df_previous_flow_asin = self.df_previous_flow_asin.repartition(self.repartition_num).persist(StorageLevel.DISK_ONLY)
        self.df_previous_flow_asin.show(10, truncate=False)
        print("2. 获取卖家相关信息")
        sql = f"""
            select fd_unique as seller_id, upper(fd_country_name) as seller_country_name from dim_fd_asin_info 
            where site_name='{self.site_name}' and fd_unique is not null group by fd_unique, fd_country_name"""
        print("sql=", sql)
        self.df_seller_info = self.spark.sql(sqlQuery=sql)
        self.df_seller_info = self.df_seller_info.repartition(self.repartition_num).persist(StorageLevel.DISK_ONLY)
        self.df_seller_info.show(10, truncate=False)
        print("3. 读取内部asin信息")
        sql = f"""select asin, 1 as is_self_asin from {self.site_name}_self_asin group by asin"""
        print("sql=", sql)
        mysql_con_info = DBUtil.get_connection_info(db_type='mysql', site_name=self.site_name)
        if mysql_con_info is not None:
            df_self_asin_info = SparkUtil.read_jdbc_query(
                session=self.spark, url=mysql_con_info['url'], pwd=mysql_con_info['pwd'],
                username=mysql_con_info['username'], query=sql)
            self.df_self_asin_info = F.broadcast(df_self_asin_info)
            self.df_self_asin_info.show(10, truncate=False)
        print("4. 读取告警品牌信息")
        sql = f"""
               select brand, 1 as is_alarm_brand
               from (select lower(trim(brand_name)) as brand
               from brand_alert_erp where brand_name is not null) t group by brand"""
        print("sql=", sql)
        if self.site_name == 'us':
            pg_cluster_con_info = DBUtil.get_connection_info(db_type="postgresql_cluster", site_name=self.site_name)
            if pg_cluster_con_info is not None:
                df_alarm_brand_info = SparkUtil.read_jdbc_query(
                    session=self.spark, url=pg_cluster_con_info['url'], pwd=pg_cluster_con_info['pwd'],
                    username=pg_cluster_con_info['username'], query=sql)
                self.df_alarm_brand_info = F.broadcast(df_alarm_brand_info)
                self.df_alarm_brand_info.show(10, truncate=False)
        else:
            schema = StructType([
                StructField("brand", StringType(), True),
                StructField("is_alarm_brand", IntegerType(), True)
            ])
            self.df_alarm_brand_info = self.spark.createDataFrame([], schema)
        print("5. 读取隐藏分类信息")
        sql = f"""
            select category_id_base as asin_bs_cate_current_id, 1 as hide_flag from us_bs_category_hide group by category_id_base
           """
        print("sql=", sql)
        us_mysql_con_info = DBUtil.get_connection_info(db_type='mysql', site_name='us')
        if us_mysql_con_info is not None:
            df_hide_category = SparkUtil.read_jdbc_query(
                session=self.spark, url=us_mysql_con_info['url'], pwd=us_mysql_con_info['pwd'],
                username=us_mysql_con_info['username'], query=sql)
            self.df_hide_category = F.broadcast(df_hide_category)
            self.df_hide_category.show(10, truncate=False)
        print("6. 读取asin_label信息")
        sql = f"""
           select asin, label from 
           (select asin, lower(label) as label, created_time,row_number() over(partition by asin,label order by updated_time desc) as crank
           from ods_other_search_term_data where site_name='{self.site_name}' and date_type='{self.date_type}' and
           date_info='{self.date_info}' and trim(label) not in ('null','') and label is not null) t where t.crank=1
        """
        print("sql=", sql)
        self.df_asin_label_info = self.spark.sql(sqlQuery=sql)
        if self.df_asin_label_info.count() <= 1:
            print("该历史节点数据不全,调整到上上个月")
            sql = f"""
           select asin, label from
           (select asin, lower(label) as label, created_time,row_number()
           over(partition by asin,label order by updated_time desc) as crank
           from ods_other_search_term_data where site_name='{self.site_name}' and date_type='{self.date_type}' and
           date_info='{self.previous_date}' and trim(label) not in ('null','') and label is not null) t where t.crank=1
        """
            print("sql=", sql)
            self.df_asin_label_info = self.spark.sql(sqlQuery=sql)
        self.df_asin_label_info = self.df_asin_label_info.groupby(['asin']).agg(
            F.collect_set("label").alias("asin_label_list"))
        self.df_asin_label_info = self.df_asin_label_info.repartition(self.repartition_num).persist(StorageLevel.DISK_ONLY)
        self.df_asin_label_info.show(10, truncate=False)
        print("7. 读取dwd_asin_measure拿取ao及各类型数量")
        sql = f"""
       select asin, asin_sp_counts as sp_counts, (asin_sb1_counts + asin_sb2_counts) as sb_counts, asin_sb3_counts as vi_counts,
       asin_bs_counts as bs_counts, asin_ac_counts as ac_counts, asin_tr_counts as tr_counts, asin_er_counts as er_counts, 
       asin_st_counts, asin_zr_counts, asin_adv_counts, round(asin_zr_flow_proportion, 3) as asin_zr_flow_proportion, 
       round(asin_ao_val, 3) as asin_ao_val, asin_amazon_orders 
       from dwd_asin_measure where site_name='{self.site_name}' and date_type='{self.date_type}' and date_info='{self.date_info}'
           """
        print("sql=", sql)
        self.df_asin_measure = self.spark.sql(sqlQuery=sql)
        self.df_asin_measure = self.df_asin_measure.repartition(self.repartition_num).persist(StorageLevel.DISK_ONLY)
        self.df_asin_measure.show(10, truncate=False)
        print("8. 读取one_category_report表")
        if int(self.year) == 2022 and int(self.month) < 3:
            sql = f"select category_id as asin_bs_cate_1_id, rank as asin_bs_cate_1_rank, orders as bsr_orders from ods_one_category_report " \
                  f"where site_name='{self.site_name}' and date_type='{self.date_type}' and date_info='2022-12'"
        else:
            sql = f"select category_id as asin_bs_cate_1_id, rank as asin_bs_cate_1_rank, orders as bsr_orders from ods_one_category_report " \
                  f"where site_name='{self.site_name}' and date_type='{self.date_type}' and date_info='{self.date_info}'"
        print("sql=", sql)
        self.df_bs_report = self.spark.sql(sqlQuery=sql)
        self.df_bs_report = self.df_bs_report.repartition(self.repartition_num).persist(StorageLevel.DISK_ONLY)
        self.df_bs_report.show(10, truncate=False)
        print("9. 读取keep_date获取上架时间")
        sql = f"""
           select asin, new_launch_time from
           (select asin, launch_time as new_launch_time,
           row_number() over(partition by asin order by updated_at desc) as trank
           from ods_asin_keep_date where site_name='{self.site_name}' and state=3) t where t.trank=1
               """
        print("sql=", sql)
        self.df_asin_keep_date = self.spark.sql(sqlQuery=sql)
        self.df_asin_keep_date = self.df_asin_keep_date.repartition(self.repartition_num).persist(StorageLevel.DISK_ONLY)
        self.df_asin_keep_date.show(10, truncate=False)
        print("10. 读取bsr有效排名信息")
        sql = f"""select rank as limit_rank, category_id as asin_bs_cate_1_id from {self.site_name}_bsr_end"""
        print("sql=", sql)
        if mysql_con_info is not None:
            df_asin_bsr_end = SparkUtil.read_jdbc_query(
                session=self.spark, url=mysql_con_info['url'], pwd=mysql_con_info['pwd'],
                username=mysql_con_info['username'], query=sql)
            self.df_asin_bsr_end = F.broadcast(df_asin_bsr_end)
            self.df_asin_bsr_end.show(10, truncate=False)
        print("11. 通过node_id获取一级分类进行分类补充")
        df_asin_new_cate = get_node_first_id_df(self.site_name, self.spark)
        self.df_asin_new_cate = F.broadcast(df_asin_new_cate)
        self.df_asin_new_cate.show(10, truncate=False)
        print("12. 获取用户修改打包数量信息")
        pg_con_info = DBUtil.get_connection_info("postgresql", "us")
        sql = f""" 
        WITH ranked_edit_logs AS (SELECT edit_key_id, lower(val_related_info) as val_related_info, val_after, 
        ROW_NUMBER() OVER (PARTITION BY edit_key_id ORDER BY create_time DESC) AS rn FROM sys_edit_log 
        WHERE module = '流量选品' AND filed = 'package_quantity' AND site_name='{self.site_name}') 
        SELECT edit_key_id as asin, val_related_info as title, cast(val_after as int) as user_package_num, 
        0 as user_is_package_quantity_abnormal FROM ranked_edit_logs WHERE rn = 1"""
        if pg_con_info is not None:
            df_user_package_num = SparkUtil.read_jdbc_query(
                session=self.spark, url=pg_con_info['url'], pwd=pg_con_info['pwd'],
                username=pg_con_info['username'], query=sql)
            self.df_user_package_num = F.broadcast(df_user_package_num)
            self.df_user_package_num.show(10, truncate=False)
        print("14. 获取分类ID与分类名称的对应关系")
        self.df_asin_category = get_first_id_from_category_desc_df(self.site_name, self.spark)
        self.df_asin_category = self.df_asin_category.withColumn(
            "category_first_name", F.lower("category_first_name")
        ).repartition(self.repartition_num).persist(StorageLevel.DISK_ONLY)
        self.df_asin_category.show(10, truncate=False)

    # 字段处理逻辑综合
    def handle_all_field(self, df):
        # 1. 处理asin分类及排名以及排名类型字段
        df = self.handle_asin_bs_category_info(df)
        # 2. 利用node_id进行分类补充
        df = self.handle_asin_category_supplement(df)
        # 3. 处理bsr销量及销售额信息以及价格类型字段
        df = self.handle_asin_bsr_orders(df)
        # 4. 解析Make-It-A-Bundle信息
        df = self.handle_asin_lob_info(df)
        # 5. 处理配送方式、卖家所在地以及卖家所在地类型
        df = self.handle_asin_buy_box_seller_type(df)
        # 6. 处理asin基础属性信息(长宽高重量等)
        df = self.handle_asin_basic_attribute_info(df)
        # 7. 处理asin图片信息
        df = self.handle_asin_img_info(df)
        # 8. 处理变体相关(ao及母体相关,自然占比及母体自然占比,各类型数量,月销信息等)
        df = self.handle_asin_measure(df)
        # 9. 提取打包数量字段
        df = self.handle_asin_package_quantity(df)
        # 10. 处理品牌标签、是否告警品牌、处理asin_lqs_rating信息
        df = self.handle_asin_lqs_and_brand(df)
        # 11.通过ASIN页面信息处理(评分类型、上架时间类型、电影标签、ASIN类型、有效类型)
        df = self.handle_asin_detail_all_type(df)
        # 12. 处理变化率相关字段
        df = self.handle_asin_attribute_change(df)
        # 13. 字段标准化
        df_save = self.handle_column_name(df)
        return df_save

    # 写入es前的准备工作
    def es_prepare(self):
        # 创建对应es索引
        EsUtils.create_index(self.es_index_name, self.client, self.es_index_body)
        print("索引名称为:", self.es_index_name)
        if not EsUtils.exist_index_alias(self.es_index_alias_name, self.client):
            EsUtils.create_index_alias(self.es_index_name, self.es_index_alias_name, self.client)
        else:
            index_name_list = EsUtils.get_index_names_associated_alias(self.es_index_alias_name, self.client)
            if self.es_index_name not in index_name_list:
                EsUtils.delete_index_alias(self.es_index_alias_name, self.client)
                EsUtils.create_index_alias(self.es_index_name, self.es_index_alias_name, self.client)
            else:
                pass

    # 写入elasticsearch逻辑
    def save_to_es(self, df, batch_num):
        print("插入当前批次数据, 插入的数量量为: " + str(batch_num))
        start_time = time.time()
        df_asin_latest_detail = df. \
            select("asin", F.col("ao_val").alias("asin_ao_val"), F.col("title").alias("asin_title"),
                   F.col("title_len").alias("asin_title_len"), F.col("category").alias("asin_category_desc"),
                   F.col("volume").alias("asin_volume"), F.col("weight").alias("asin_weight"),
                   F.col("launch_time").alias("asin_launch_time"), F.col("brand").alias("asin_brand_name"), "one_star",
                   "two_star", "three_star", "four_star", "five_star", "low_star", "account_name", "account_id",
                   F.col("site_name").alias("seller_country_name"), "category_first_id", "parent_asin", "variation_num",
                   "img_info", "asin_crawl_date", F.col("price").alias("asin_price"),
                   F.col("rating").alias("asin_rating"),
                   F.col("total_comments").alias("asin_total_comments"), "matrix_ao_val", "zr_flow_proportion",
                   "matrix_flow_proportion", F.lit(self.date_info).alias("date_info"), "img_url",
                   F.col("category_id").alias("category_current_id"),
                   F.col("first_category_rank").alias("category_first_rank"),
                   F.col("current_category_rank").alias("category_current_rank"), "asin_type",
                   "bsr_orders", "bsr_orders_sale", "page_inventory", "asin_bought_month", "seller_json", "buy_box_seller_type")
        df = df.drop("category", "seller_json")
        df.write.format("org.elasticsearch.spark.sql").options(**self.es_options).mode("append").save()
        end_time = time.time()
        elapsed_time = end_time - start_time
        print("当前插入时长为:" + str(elapsed_time))
        # ASIN最新详情的信息
        if self.consumer_type == 'latest' and self.test_flag == 'normal':
            print("导出ASIN最新详情信息到doris:")
            table_columns = """asin, asin_ao_val, asin_title, asin_title_len, asin_category_desc, asin_volume, 
            asin_weight, asin_launch_time, asin_brand_name, one_star, two_star, three_star, four_star, five_star, low_star, 
            account_name, account_id, seller_country_name, category_first_id, parent_asin, variation_num, img_info, 
            asin_crawl_date, asin_price, asin_rating, asin_total_comments, matrix_ao_val, zr_flow_proportion, matrix_flow_proportion, 
            date_info, img_url, category_current_id, category_first_rank, category_current_rank, asin_type, bsr_orders, bsr_orders_sale, 
            page_inventory, asin_bought_month, seller_json, buy_box_seller_type"""
            DorisHelper.spark_export_with_columns(df_save=df_asin_latest_detail, db_name=self.doris_db, table_name=self.asin_latest_detail_table, table_columns=table_columns)
            df_asin_latest_detail.unpersist()

    # 实时消费中批次数据的处理逻辑
    def handle_kafka_stream(self, df, batch_id):
        try:
            batch_num = df.count()
            if batch_num > 0:
                start_time = time.time()
                print("当前批次:" + str(batch_id) + "; 该批次数据量为:" + str(batch_num))
                df = df.repartition(self.repartition_num)
                batch_id = int(batch_id) + self.initial_batch_id
                df_save = self.handle_all_field(df)
                self.es_prepare()
                self.save_to_es(df_save, batch_num)
                df_save.unpersist()
                end_time = time.time()
                print("当前批次:" + str(batch_id) + "执行完毕, 执行时长为:" + str(end_time - start_time))
            else:
                print("当前批次没有数据")
        except Exception as e:
            print(e, traceback.format_exc())

    # 消费主题下的所有历史数据
    def handle_kafka_history(self, kafka_df):
        print("处理kafka历史数据")
        batch_num = kafka_df.count()
        if batch_num > 0:
            self.history_batch_id = self.history_batch_id + 1
            start_time = time.time()
            kafka_df = kafka_df.repartition(self.repartition_num)
            kafka_df = self.handle_all_field(kafka_df)
            self.es_prepare()
            self.save_to_es(kafka_df, batch_num)
            end_time = time.time()
            print("该批次数据处理完毕, 执行时长为:" + str(end_time - start_time))
        else:
            raise ValueError("当前主题中没有数据,请注意检查!")


if __name__ == '__main__':
    arguments = sys.argv[1:]
    site_name = sys.argv[1]  # 参数1:站点
    date_type = sys.argv[2]  # 参数2:类型:week/4_week/month/quarter/day
    date_info = sys.argv[3]  # 参数3:年-周/年-月/年-季/年-月-日, 比如: 2022-1
    consumer_type = sys.argv[4]  # 参数3:年-周/年-月/年-季/年-月-日, 比如: 2022-1
    if len(arguments) == 5:
        test_flag = sys.argv[5]
    else:
        test_flag = 'normal'
    handle_obj = KafkaFlowAsinDetail(site_name=site_name, date_type=date_type, date_info=date_info, consumer_type=consumer_type, test_flag=test_flag, batch_size=200000)
    handle_obj.run_kafka()