amazon_bsr_selection.py 2.99 KB
Newer Older
chenyuanjie committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
import os
import sys

sys.path.append(os.path.dirname(sys.path[0]))  # 上级目录
from pyspark.storagelevel import StorageLevel
from utils.templates import Templates
from ..utils.templates import Templates
# from AmazonSpider.pyspark_job.utils.templates_test import Templates
from pyspark.sql.types import StringType, IntegerType
# 分组排序的udf窗口函数
from pyspark.sql.window import Window
from pyspark.sql import functions as F



class AmazonBsrSelection(Templates):

    def __init__(self, site_name='us', date_type="month", date_info='2022-01'):
        super().__init__()
        self.site_name = site_name
        self.date_type = date_type
        self.date_info = date_info
        self.db_save = f'dwt_bsr_analytics_temp'
        self.spark = self.create_spark_object(
            app_name=f"{self.db_save}: {self.site_name}, {self.date_type}, {self.date_info}")
        self.get_date_info_tuple()

    def read_data(self):
        print("1.1 读取dim_st_asin_info表")
        sql = f"select * from dim_st_asin_info where site_name='{self.site_name}' and date_type='day' and date_info in {self.date_info_tuple}"
        print("sql:", sql)
        self.df_st_asin = self.spark.sql(sqlQuery=sql).cache()
        self.df_st_asin.show(10, truncate=False)
        print("2.1 读取dim_st_detail和ods_brand_analytics表")
        sql = f"select search_term, st_rank, st_search_sum from dim_st_detail where site_name='{self.site_name}' and date_type='{self.date_type}' and date_info ='{self.date_info}';"
        print("sql:", sql)
        self.df_st = self.spark.sql(sqlQuery=sql).cache()
        self.df_st.show(10, truncate=False)
        print("3.1 读取dim_cal_asin_detail_history表")
        sql = f"select asin, asin_rank, bsr_cate_1_id, asin_title " \
              f"from dim_cal_asin_history_detail where site_name='{self.site_name}';"
        self.df_asin = self.spark.sql(sql)
        self.df_asin = self.spark.sql(sqlQuery=sql).cache()
        print("4.1 读取dim_cal_asin_detail_history表")
        sql = f"select asin, cate_current_id, bsr_rank, rating, total_comments " \
              f"from ods_bs_category_top100_asin where site_name='{self.site_name}';"
        self.df_asin_top100 = self.spark.sql(sql)
        self.df_asin_top100 = self.spark.sql(sqlQuery=sql).cache()
        print("5.1 读取ods_bs_category表")
        sql = f"select id as cate_current_id, one_category_id, en_name as cate_current_id_en_name " \
              f"from ods_bs_category where site_name='{self.site_name}';"
        self.df_bs_category = self.spark.sql(sql)
        self.df_bs_category = self.spark.sql(sqlQuery=sql).cache()

    def handle_data(self):
        pass


if __name__ == '__main__':
    site_name = sys.argv[1]  # 参数1:站点
    date_type = sys.argv[2]  # 参数2:类型:day/week/4_week/month/quarter
    date_info = sys.argv[3]  # 参数3:年-月-日/年-周/年-月/年-季, 比如: 2022-1
    handle_obj = AmazonBsrSelection(site_name=site_name, date_type=date_type, date_info=date_info)
    handle_obj.run()