dwt_keepa_asin_bsr_rank.py 13.4 KB
Newer Older
chenyuanjie committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
"""
author: wangrui
description: 根据ods_keepa_asin_bsr_rank得到最小产品线市场数据汇总
table_read_name: ods_keepa_asin_bsr_rank\dim_asin_detail
table_save_name: dwt_keepa_asin_bsr_rank
table_save_level: dwt
version: 2.0
created_date: 2023-08-22
updated_date: 2023-08-22
"""

import os
import sys

sys.path.append(os.path.dirname(sys.path[0]))  # 上级目录
from utils.templates import Templates
# 分组排序的udf窗口函数
from pyspark.sql import functions as F
from pyspark.sql import Window
from yswg_utils.common_df import get_node_first_id_df
from pyspark.sql.types import IntegerType
from utils.db_util import DBUtil
from utils.spark_util import SparkUtil
from yswg_utils.common_udf import udf_parse_amazon_orders


class DwtAsinBsrRank(Templates):

    def __init__(self, site_name="us", date_type="month", date_info="2023-01", run_type=1):
        super().__init__()
        self.site_name = site_name
        self.date_type = date_type
        self.date_info = date_info
        self.run_type = int(run_type)
        self.db_save_summary = f"dwt_keepa_asin_bsr_rank"
        self.db_save_detail = f"dws_keepa_asin_bsr_rank"
        self.spark = self.create_spark_object(
            app_name=f"keepa_asin_bsr_rank {self.site_name} {self.date_type} {self.date_info}")
        self.year, self.month = self.date_info.split('-')
        self.get_year_month_days_dict(year=int(self.year))
        self.complete_date_info_tuple = self.get_complete_week_tuple()
        self.orders_transform_rate = self.get_orders_transform_rate()
        self.df_save_summary = self.spark.sql(f"select 1+1;")
        self.df_save_detail = self.spark.sql(f"select 1+1;")
        self.df_asin_detail = self.spark.sql(f"select 1+1;")
        self.df_keepa_asin = self.spark.sql(f"select 1+1;")
        self.df_asin_new_cate = self.spark.sql(f"select 1+1;")
        self.df_inv_asin = self.spark.sql(f"select 1+1;")
        self.df_inv_asin_detail = self.spark.sql(f"select 1+1;")
        self.df_complete_inv_asin = self.spark.sql(f"select 1+1;")
        self.partitions_by = ['site_name', 'date_type', 'date_info']
        self.reset_partitions(60)
        self.u_parse_amazon_orders = F.udf(udf_parse_amazon_orders, IntegerType())

    def get_complete_week_tuple(self):
        self.df_date = self.spark.sql(f"select * from dim_date_20_to_30 ;")
        df = self.df_date.toPandas()
        df_loc = df.loc[(df.year_month == f"{self.date_info}") & (df.week_day == 1)]
        return tuple(df_loc.year_week)

    def get_orders_transform_rate(self):
        month_days = self.year_month_days_dict[int(self.month)]
        if self.date_type in ['day', 'week']:
            if self.date_type == 'day':
                return 1 / month_days
            if self.date_type == 'week':
                return 7 / month_days
        else:
            return 1

    def read_data(self):
        print("1. 读取dim_asin_detail, 获取上个月所有asin信息")
        if self.run_type == 1:
            sql = f"""
                            select 
                                asin,
                                rank,
                                price,
                                node_id as cat_id,
                                category,
                                buy_sales,
                                created_at as dt
                            from ods_asin_detail where site_name='{self.site_name}' and date_type='month' and date_info = '{self.date_info}' and node_id is not null;         
                    """
        else:
            sql = f"""
                    select 
                        asin,
                        rank,
                        price,
                        node_id as cat_id,
                        category,
                        buy_sales,
                        created_at as dt
                    from ods_asin_detail where site_name='{self.site_name}' and date_type='month_week' and date_info = '{self.date_info}' and node_id is not null;         
            """
        print("sql:", sql)
        self.df_asin_detail = self.spark.sql(sqlQuery=sql).repartition(60).cache()
        self.df_asin_detail.show(20, truncate=False)
        print("2. 读取内部asin信息")
        sql = f"select asin, 1 as is_self_asin from us_self_asin where delete_time is null group by asin "
        print("sql:", sql)
        mysql_con_info = DBUtil.get_connection_info(db_type='mysql', site_name=self.site_name)
        if mysql_con_info is not None:
            self.df_self_asin = SparkUtil.read_jdbc_query(session=self.spark, url=mysql_con_info['url'],
                                                          pwd=mysql_con_info['pwd'],
                                                          username=mysql_con_info['username'],
                                                          query=sql).cache()
            self.df_self_asin.show(20, truncate=False)

        # 读取dim_bsr_category_tree 新的类目树 获取一级分类id
        self.df_asin_new_cate = get_node_first_id_df(self.site_name, self.spark)
        self.df_asin_new_cate = self.df_asin_new_cate.withColumnRenamed("node_id", "cat_id")
        self.df_asin_new_cate = self.df_asin_new_cate.withColumnRenamed("category_first_id", "cate_1_id").cache()
        self.df_asin_new_cate.show(20, truncate=False)
        print("3. 读取inv_asin数据")
        sql = f"""
            select asin, 1 as is_inner from us_inv_asin group by asin
        """
        if mysql_con_info is not None:
            self.df_inv_asin = SparkUtil.read_jdbc_query(session=self.spark, url=mysql_con_info['url'],
                                                         pwd=mysql_con_info['pwd'],
                                                         username=mysql_con_info['username'],
                                                         query=sql).cache()
            self.df_inv_asin.show(20, truncate=False)
        print("4. 读取self_asin_detail")
        sql = f"""
            select asin ,node_id as cat_id from us_self_asin_detail where  asin_type like '%%11%%' and created_at >= DATE_FORMAT(CURDATE(), '%Y-%m-01') group by asin, node_id
        """
        if mysql_con_info is not None:
            self.df_inv_asin_detail = SparkUtil.read_jdbc_query(session=self.spark, url=mysql_con_info['url'],
                                                         pwd=mysql_con_info['pwd'],
                                                         username=mysql_con_info['username'],
                                                         query=sql).cache()
            self.df_inv_asin_detail.show(20, truncate=False)

    def handle_inv_asin_cat(self):
        self.df_inv_asin = self.df_inv_asin.join(
            self.df_inv_asin_detail, on=['asin'], how='left'
        )
        self.df_inv_asin = self.df_inv_asin.filter((F.col("cat_id").isNotNull()) & (F.col("cat_id") != '')).cache()
        self.df_keepa_asin = self.df_inv_asin.select("cat_id", "is_inner")

    def handle_asin_detail(self):
        self.df_asin_detail = self.df_asin_detail.repartition(60)
        window = Window.partitionBy(['asin']).orderBy(
            self.df_asin_detail.dt.desc()
        )
        self.df_asin_detail = self.df_asin_detail.withColumn('dt_rank', F.row_number().over(window=window))
        self.df_asin_detail = self.df_asin_detail.filter("dt_rank = 1")
        self.df_asin_detail = self.df_asin_detail.drop("dt_rank")
        self.df_asin_detail = self.df_asin_detail.withColumn("orders",
                                                             self.u_parse_amazon_orders(self.df_asin_detail.buy_sales))
        self.df_asin_detail = self.df_asin_detail.join(
            self.df_self_asin, on=['asin'], how='left'
        )
        self.df_asin_detail = self.df_asin_detail.filter((F.col("is_self_asin") != 1) | (F.col("is_self_asin").isNull())).drop("is_self_asin").cache()

    def handle_data_join(self):
        self.df_asin_detail = self.df_asin_detail.repartition(60)
        self.df_asin_detail = self.df_asin_detail.join(
            self.df_keepa_asin, on=['cat_id'], how='left'
        ).join(
            self.df_asin_new_cate, on=['cat_id'], how='left'
        )
        self.df_asin_detail = self.df_asin_detail.drop_duplicates(['asin']).cache()
        self.df_asin_detail = self.df_asin_detail.na.fill({"is_inner": 2})

    def handle_keepa_asin_detail(self):
        type_expr = """
                CASE
                    WHEN 
                        (price is not null and price < 7 and orders >= 150) or 
                        (price >= 7 and price < 15 and orders >= 100) or 
                        (price >= 15 and price < 20 and orders >= 80) or
                        (price >= 20 and price < 35 and orders >= 40) or
                        (price >= 35 and price < 50 and orders >= 30) or
                        (price >= 50 and orders >= 20) or
                        (price is null and orders >=50) 
                    THEN
                        1
                    ELSE
                        2
                END
        """
        self.df_asin_detail = self.df_asin_detail.withColumn('type', F.expr(type_expr))
        self.df_save_detail = self.df_asin_detail.select("cat_id", "asin", "rank", "price", "cate_1_id", "orders",
                                                         "type", "category").cache()

    def handle_keepa_asin_summary(self):
        self.df_save_summary = self.df_asin_detail.select("cat_id", "orders", "type", "is_inner").cache()
        self.df_save_summary = self.df_save_summary.groupby(['cat_id']).agg(
            F.first(F.col("is_inner")).alias("is_inner"),
            F.sum(F.col("orders")).alias("orders_sum"),
            F.sum(F.when(F.col('type') == 1, F.col("orders")).otherwise(F.lit(0))).alias("success_orders_sum"),
            F.sum(F.when(F.col('type') == 2, F.col("orders")).otherwise(F.lit(0))).alias("fail_orders_sum"),
            F.sum(F.when(F.col('type') == 1, 1).otherwise(F.lit(0))).alias("success_num"),
            F.sum(F.when(F.col('type') == 2, 1).otherwise(F.lit(0))).alias("fail_num"),
            F.sum(F.when(F.col("orders") >= 50, 1).otherwise(0)).alias("50_qty_asin_count")
        )

        df_category_info = self.df_asin_detail.select("cat_id", "category", "dt")
        df_with_category_info = df_category_info.filter(F.col("category").isNotNull())
        window = Window.partitionBy(['cat_id']).orderBy(
            df_with_category_info.dt.desc()
        )
        df_category_info = df_with_category_info.withColumn("c_rank", F.row_number().over(window=window))
        df_new_category_info = df_category_info.filter("c_rank = 1")
        df_new_category_info = df_new_category_info.drop("c_rank", "dt")
        self.df_save_summary = self.df_save_summary.join(
            df_new_category_info, on=['cat_id'], how='left'
        ).cache()

    def handle_data_group(self):
        self.df_save_detail = self.df_save_detail.withColumn("created_time", F.date_format(F.current_timestamp(),
                                                                                           'yyyy-MM-dd HH:mm:SS')). \
            withColumn("updated_time", F.date_format(F.current_timestamp(), 'yyyy-MM-dd HH:mm:SS')). \
            withColumn("string_field1", F.lit("null")). \
            withColumn("string_field2", F.lit("null")). \
            withColumn("string_field3", F.lit("null")). \
            withColumn("int_field1", F.lit(0)). \
            withColumn("int_field2", F.lit(0)). \
            withColumn("int_field3", F.lit(0)). \
            withColumn("site_name", F.lit(self.site_name)). \
            withColumn("date_type", F.lit(self.date_type)). \
            withColumn("date_info", F.lit(self.date_info))

        self.df_save_summary = self.df_save_summary.withColumn("create_time", F.date_format(F.current_timestamp(),
                                                                                             'yyyy-MM-dd HH:mm:SS')). \
            withColumn("updated_time", F.date_format(F.current_timestamp(), 'yyyy-MM-dd HH:mm:SS')). \
            withColumn("string_field1", F.lit("null")). \
            withColumn("string_field2", F.lit("null")). \
            withColumn("string_field3", F.lit("null")). \
            withColumn("int_field1", F.lit(0)). \
            withColumn("int_field2", F.lit(0)). \
            withColumn("int_field3", F.lit(0)). \
            withColumn("site_name", F.lit(self.site_name)). \
            withColumn("date_type", F.lit(self.date_type)). \
            withColumn("date_info", F.lit(self.date_info))

    def handle_data(self):
        self.read_data()
        self.handle_inv_asin_cat()
        self.handle_asin_detail()
        self.handle_data_join()
        self.handle_keepa_asin_detail()
        self.handle_keepa_asin_summary()
        self.handle_data_group()

    def save_data(self):
        self.save_data_common(
            df_save=self.df_save_detail,
            db_save=self.db_save_detail,
            partitions_num=self.partitions_num,
            partitions_by=self.partitions_by
        )
        self.save_data_common(
            df_save=self.df_save_summary,
            db_save=self.db_save_summary,
            partitions_num=self.partitions_num,
            partitions_by=self.partitions_by
        )


if __name__ == '__main__':
    site_name = sys.argv[1]  # 参数1:站点
    date_type = sys.argv[2]  # 参数2:类型:week/4_week/month/quarter
    date_info = sys.argv[3]  # 参数3:年-周/年-月/年-季, 比如: 2022-1
    run_type = sys.argv[4]
    handle_obj = DwtAsinBsrRank(site_name=site_name, date_type=date_type, date_info=date_info, run_type=run_type)
    handle_obj.run()