openai_session.py 7.71 KB
Newer Older
chenyuanjie committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
import openai
import tiktoken
from cachetools import cached
import random
from http import HTTPStatus
import dashscope

from app.util.common_util import CommonUtil

global_req_count = 0

#  当前队列
global_req_queue_dict = {}


def get_api_key(platform: str):
    import threading
    lock = threading.Lock()
    global global_req_count
    try:
        global_req_count = global_req_count + 1
        lock.acquire()
        platform_key = {
            "gpt": [
                # cjy chat_gpt 3.5 key
                # "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",
                # "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",
                # "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",
                # "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",
                # "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",
                # "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",
                # 目前key均不可用
                "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"
            ],
            "qwen": [
                # wjc qianwen key
                "sk-ea265337fdc644f58822e13947500368"
            ]
        }
        key_pool = platform_key.get(platform)
        #  加锁轮训获取密匙
        index = global_req_count % len(key_pool)
        return key_pool[index]
    finally:
        lock.release()
        pass


@cached(cache={})
def check_ip(host: str):
    from tcping import Ping
    ping = Ping(host=host, timeout=1)
    ping.ping(2)
    result = ping.result.rows[0]
    return result.successed > 0


def num_tokens_from_messages(messages, model="gpt-3.5-turbo"):
    """Returns the number of tokens used by a list of messages."""

    encoding = tiktoken.encoding_for_model(model)

    if model == "gpt-3.5-turbo":
        print("Warning: gpt-3.5-turbo may change over time. Returning num tokens assuming gpt-3.5-turbo-0301.")
        return num_tokens_from_messages(messages, model="gpt-3.5-turbo-0301")
    elif model == "gpt-4":
        print("Warning: gpt-4 may change over time. Returning num tokens assuming gpt-4-0314.")
        return num_tokens_from_messages(messages, model="gpt-4-0314")
    elif model == "gpt-3.5-turbo-0301":
        tokens_per_message = 4  # every message follows <im_start>{role/name}\n{content}<im_end>\n
        tokens_per_name = -1  # if there's a name, the role is omitted
    elif model == "gpt-4-0314":
        tokens_per_message = 3
        tokens_per_name = 1
    else:
        raise NotImplementedError(
            f"""
num_tokens_from_messages() is not implemented for model {model}.
See https://github.com/openai/openai-python/blob/main/chatml.md for information on how messages are converted to tokens.""")
    num_tokens = 0
    for message in messages:
        num_tokens += tokens_per_message
        for key, value in message.items():
            num_tokens += len(encoding.encode(value))
            if key == "name":
                num_tokens += tokens_per_name
    num_tokens += 2  # every reply is primed with <im_start>assistant
    return num_tokens


def qwen_num_tokens_from_input(messages, model="qwen-max"):
    dashscope.api_key = get_api_key("qwen")
    response = dashscope.Tokenization.call(model=model,
                                           messages=messages,
                                           )
    if response.status_code == HTTPStatus.OK:

        num_tokens = response.usage['input_tokens']

    else:
        raise NotImplementedError('Failed request_id: %s, status_code: %s, code: %s, message:%s' %
                                  (response.request_id, response.status_code, response.code,
                                   response.message))
    return num_tokens


class GptChatSession:

    def __init__(self, ):
        self.messages = [
            # system message first, it helps set the behavior of the assistant
            {"role": "system", "content": "You are a research assistant."},
        ]

    def send_msg(self, msg: str):

        assert msg is not None, "msg 不能为空!"
        assert check_ip("api.openai.com"), "ai网络连接失败,请检查!!"

        self.messages.append(
            {"role": "user", "content": msg},
        )
        model = "gpt-3.5-turbo"
        num = num_tokens_from_messages(self.messages, model)
        # https://platform.openai.com/docs/models/gpt-3-5
        max_token_num = 4096
        assert num <= max_token_num, "token超过最大长度,无法解析!!"
        start = CommonUtil.current_time()

        global chatCompletion
        #  最大重试次数
        try:
            openai.api_key = get_api_key("gpt")
            chatCompletion = openai.ChatCompletion.create(
                model=model,
                messages=self.messages
            )
        except openai.error.OpenAIError as err:
            raise Exception(f"chatgpt调用失败,{err},请重试!!")
            pass

        end = CommonUtil.current_time()
        cost_time = end - start
        reply = chatCompletion.choices[0].message.content
        cost_token = chatCompletion.usage.total_tokens
        self.messages.append({"role": "assistant", "content": reply})
        return reply, cost_token, cost_time

    # 通义千问消息发送请求
    def send_message_qwen(self, msg: str, model="qwen-max"):
        assert msg is not None, "msg 不能为空!"

        self.messages.append(
            {"role": "user", "content": msg},
        )

        # todo 添加token验证
        num = qwen_num_tokens_from_input(messages=self.messages, model=model)
        # https://platform.openai.com/docs/models/gpt-3-5
        print(f"传入的message的token数量为:{num}")
        max_token_num = 6000
        assert num <= max_token_num, "token超过最大长度,无法解析!!"
        start = CommonUtil.current_time()

        global chatCompletion
        dashscope.api_key = get_api_key("qwen")
        chatCompletion = dashscope.Generation.call(
            model=model,
            messages=self.messages,
            seed=random.randint(1, 10000),
            result_format='message'
        )
        if chatCompletion.status_code == HTTPStatus.OK:
            end = CommonUtil.current_time()
            cost_time = end - start
            reply = chatCompletion.output.choices[0].message.content
            cost_token = chatCompletion.usage.total_tokens
            print("请求分析结果消耗时间:", cost_time)
            self.messages.append({"role": "assistant", "content": reply})
        else:
            raise Exception(
                f"通义千问调用失败,status_code: {chatCompletion.status_code}, code: {chatCompletion.code}, message:{chatCompletion.message},请重试!!")
            pass
        self.messages.append({"role": "assistant", "content": reply})
        return reply, cost_token, cost_time

    def send_message_qwen_stream(self, msg: str, model="qwen-max"):
        """
        通义千问消息发送请求
        :param msg:
        :param model:
        :return:
        """
        assert msg is not None, "msg 不能为空!"
        self.messages.append(
            {"role": "user", "content": msg},
        )

        num = qwen_num_tokens_from_input(messages=self.messages, model=model)
        print(f"传入的message的token数量为:{num}")
        max_token_num = 6000
        assert num <= max_token_num, "token超过最大长度,无法解析!!"

        global chatCompletion
        dashscope.api_key = get_api_key("qwen")
        response_generator = dashscope.Generation.call(
            model=model,
            messages=self.messages,
            seed=random.randint(1, 10000),
            result_format='message',
            stream=True
        )
        return response_generator


if __name__ == '__main__':
    pass