kafka_test.py 11 KB
Newer Older
chenyuanjie committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
import os
import re
import sys
import traceback
from datetime import datetime

sys.path.append(os.path.dirname(sys.path[0]))  # 上级目录
from utils.templates import Templates
# from ..utils.templates import Templates
from pyspark.sql.types import IntegerType
from pyspark.sql import functions as F
from pyspark.sql.types import *
from yswg_utils.common_udf import udf_rank_and_category
# from ..yswg_utils.common_udf import udf_rank_and_category


class DimStAsinInfo(Templates):

    def __init__(self, site_name='us', date_type="day", date_info='2022-10-01'):
        super().__init__()
        self.site_name = site_name
        self.date_type = date_type
        self.date_info = date_info
        self.db_save = f'kafka_test'
        self.spark = self.create_spark_object(
            app_name=f"{self.db_save}: {self.site_name},{self.date_type}, {self.date_info}")
        self.kafka = self.create_kafka_object()
        self.df_save = self.spark.sql(f"select 1+1;")
        self.df_st_asin = self.spark.sql(f"select 1+1;")
        self.df_asin_templates = self.spark.sql("select asin_zr_counts, asin_sp_counts, asin_sb1_counts,asin_sb2_counts,asin_sb3_counts,asin_ac_counts,asin_bs_counts,asin_er_counts,asin_tr_counts from dwd_asin_measure limit 0")
        self.df_asin_counts = self.spark.sql("select asin_zr_counts, asin_sp_counts, asin_sb1_counts,asin_sb2_counts,asin_sb3_counts,asin_ac_counts,asin_bs_counts,asin_er_counts,asin_tr_counts from dwd_asin_measure limit 0")
        self.schema = self.init_schema()
        schema = StructType([
            StructField('bs_rank_str', StringType(), True),
            StructField('bs_category_str', StringType(), True),
        ])
        # self.u_rank_and_category = self.spark.udf.register("u_rank_and_category", udf_rank_and_category, schema)
        self.u_rank_and_category = self.spark.udf.register("u_rank_and_category", self.udf_rank_and_category, schema)

    @staticmethod
    def init_schema():
        schema = StructType([
            StructField("asin", StringType(), True),
            StructField("week", StringType(), True),
            StructField("title", StringType(), True),
            StructField("img_url", StringType(), True),
            StructField("rating", StringType(), True),
            StructField("total_comments", StringType(), True),
            StructField("price", FloatType(), True),
            StructField("rank", StringType(), True),
            StructField("category", StringType(), True),
            StructField("launch_time", StringType(), True),
            StructField("volume", StringType(), True),
            StructField("weight", StringType(), True),
            StructField("page_inventory", IntegerType(), True),
            StructField("buy_box_seller_type", IntegerType(), True),
            StructField("asin_vartion_list", IntegerType(), True),
            StructField("title_len", IntegerType(), True),
            StructField("img_num", IntegerType(), True),
            StructField("img_type", StringType(), True),
            StructField("activity_type", StringType(), True),
            StructField("one_two_val", StringType(), True),
            StructField("three_four_val", StringType(), True),
            StructField("eight_val", StringType(), True),
            StructField("qa_num", IntegerType(), True),
            StructField("five_star", IntegerType(), True),
            StructField("four_star", IntegerType(), True),
            StructField("three_star", IntegerType(), True),
            StructField("two_star", IntegerType(), True),
            StructField("one_star", IntegerType(), True),
            StructField("low_star", IntegerType(), True),
            StructField("together_asin", StringType(), True),
            StructField("brand", StringType(), True),
            StructField("ac_name", StringType(), True),
            StructField("material", StringType(), True),
            StructField("node_id", StringType(), True),
            StructField("data_type", IntegerType(), True),
            StructField("sp_num", StringType(), True),
            StructField("describe", StringType(), True),
            StructField("date_info", StringType(), True),
            StructField("weight_str", StringType(), True),
            StructField("package_quantity", StringType(), True),
            StructField("pattern_name", StringType(), True),
            StructField("seller_id", StringType(), True),
            StructField("variat_num", IntegerType(), True),
            StructField("site_name", StringType(), True),
            StructField("best_sellers_rank", StringType(), True),
            StructField("best_sellers_herf", StringType(), True)
        ])
        return schema

    # @staticmethod
    # def udf_rank_and_category(best_sellers_rank):
    #     # 提取到公共方法中 直接复制的
    #     return udf_rank_and_category(best_sellers_rank)

    @staticmethod
    def udf_rank_and_category(best_sellers_rank):
        pattern = r"([\d,]+) in ([\w&' ]+)"
        best_sellers_rank = re.sub(r'\(See Top 100 in .*?\)', '', str(best_sellers_rank))
        matches = re.findall(pattern, str(best_sellers_rank))

        bs_rank_str = ",".join([rank.replace(",", "") for rank, category in matches])
        bs_category_str = ",".join([category.strip().replace(",", " ") for rank, category in matches])
        return bs_rank_str, bs_category_str

    def create_kafka_object(self):
        # .option("my_kafka.bootstrap.servers", "113.100.143.162:39092") \
        kafkaStreamDF = self.spark.readStream \
            .format("my_kafka") \
            .option("my_kafka.bootstrap.servers", "192.168.10.221:9092,192.168.10.220:9092,192.168.10.210:9092") \
            .option("subscribe", f"{self.site_name}_asin_detail") \
            .option("startingOffsets", "lastest") \
            .load()
        return kafkaStreamDF

    def read_data(self):
        print("1.1 读取dim_st_asin_info表, 计算ao值")
        sql = f"select * from dim_st_asin_info where site_name='{self.site_name}' and date_type='{self.date_type}' and date_info='{self.date_info}'"
        print("sql:", sql)
        self.df_st_asin = self.spark.sql(sql)
        self.df_st_asin = self.df_st_asin.drop_duplicates(['search_term', 'asin', 'data_type']).cache()
        self.df_st_asin.show(10, truncate=False)

        # print("1.2 读取dim_st_asin_info表, 计算ao值")
        # sql = f"select asin, asin_weight, asin_volume from dim_st_asin_info where site_name='{self.site_name}' and date_type='{self.date_type}' and date_info='{self.date_info}'"
        # print("sql:", sql)
        # self.df_st_asin = self.spark.sql(sql)
        # self.df_st_asin = self.df_st_asin.drop_duplicates(['search_term', 'asin', 'data_type']).cache()
        # self.df_st_asin.show(10, truncate=False)

    def handle_data(self):
        # 计算asin的ao值
        self.df_asin_counts = self.handle_st_asin_counts()
        self.df_asin_counts = self.df_asin_counts.select("asin", "asin_ao").cache()

    def handle_asin_bs_category_rank(self, df):
        df = df.withColumn(
            'bs_str', self.u_rank_and_category('best_sellers_rank')
        )
        df = df.withColumn('bs_rank_str', df.bs_str.getField('bs_rank_str')) \
            .withColumn('bs_category_str', df.bs_str.getField('bs_category_str')) \
            .drop('bs_str')
        df.show(10, truncate=False)
        return df

    def handle_st_asin_counts(self):
        self.df_st_asin = self.df_st_asin.withColumn(
            f"asin_data_type",
            F.concat(F.lit(f"asin_"), self.df_st_asin.data_type, F.lit(f"_counts"))
        )
        df_asin_counts = self.df_st_asin.groupby([f'asin']). \
            pivot(f"asin_data_type").count()

        df_asin_counts = self.df_asin_templates.unionByName(df_asin_counts, allowMissingColumns=True)  # 防止爬虫数据没有导致程序运行出错
        df_asin_counts = df_asin_counts.fillna(0)
        # df.show(10, truncate=False)
        df_asin_counts = df_asin_counts.withColumn(
            f"asin_sb_counts",
            df_asin_counts[f"asin_sb1_counts"] + df_asin_counts[f"asin_sb2_counts"] + df_asin_counts[f"asin_sb3_counts"]
        )
        df_asin_counts = df_asin_counts.withColumn(
            f"asin_adv_counts",
            df_asin_counts[f"asin_sb_counts"] + df_asin_counts[f"asin_sp_counts"]
        )
        df_asin_counts = df_asin_counts.withColumn(
            f"asin_ao",
            df_asin_counts[f"asin_adv_counts"] / df_asin_counts[f"asin_zr_counts"]
        )  # 不要把null置为0, null值产生原因是zr类型没有搜到对应的搜索词
        df_asin_counts.show(10, truncate=False)
        return df_asin_counts

    def process_batch(self, df, epoch_id):
        try:
            print("df.count():", df.count())
            # df.show(5, truncate=False)
            # 确保schema非空以避免NoneType错误
            if not self.schema:
                raise ValueError("Schema is not defined")
            df = df.withColumn("parsed_value", F.from_json(F.col("value").cast("string"), self.schema)) \
                .selectExpr("parsed_value.*")
            # df.show(5, truncate=False)
            # print("df.columns:", df.columns)
            df = df.select("asin", "launch_time", "volume", "weight", "weight_str", "variat_num", "best_sellers_rank", "best_sellers_herf", "site_name")
            df.show(5, truncate=False)
            # # 提取排名和分类
            df_bs = self.handle_asin_bs_category_rank(df=df.select("asin", "best_sellers_rank"))
            # join
            # df_bs = df_bs.join(self.df_asin_counts, on='asin', how='left')
            # df_bs.show(5, truncate=False)
            df_save = df.join(
                df_bs, on='asin', how='left'
            ).join(
                self.df_asin_counts, on='asin', how='left'
            )
            df_save.show(5, truncate=False)
        except Exception as e:
            print(e, traceback.format_exc())

        # # 与从Kafka读取的数据进行连接
        # joined_df = df.join(self.df_asin_title, "asin", how='left')
        # # 执行你的转换和聚合逻辑
        # result_df = joined_df.groupBy("asin").count()
        # result_df.show(10, truncate=False)
        print("epoch_id:", epoch_id, datetime.now().strftime("%Y-%m-%d %H:%M:%S"))

    def run(self):
        self.read_data()
        self.handle_data()
        # 将消息值转换为字符串,并创建一个临时视图
        stringifiedDF = self.kafka.selectExpr("CAST(value AS STRING)")
        stringifiedDF.createOrReplaceTempView("KafkaData")
        # 设置streaming查询,每5分钟触发一次
        query = stringifiedDF.writeStream.foreachBatch(self.process_batch).trigger(processingTime='600 seconds').start()
        # 等待查询终止
        query.awaitTermination()


if __name__ == '__main__':
    site_name = sys.argv[1]  # 参数1:站点
    date_type = sys.argv[2]  # 参数2:类型:week/4_week/month/quarter/day
    date_info = sys.argv[3]  # 参数3:年-周/年-月/年-季/年-月-日, 比如: 2022-1
    handle_obj = DimStAsinInfo(site_name=site_name, date_type=date_type, date_info=date_info)
    handle_obj.run()