dwt_st_info.py 13.3 KB
Newer Older
chenyuanjie committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
"""
1. 热搜词,上升词,新出词,在售商品数等
2. 预估销量
3. bs销量, bs的category_id
4,st_ao_val
"""
"""
author: 方星钧(ffman)
description: 基于dwd层等表,计算出search_term和asin维度的基础信息表(包括预估销量)
table_read_name: dwd_st_counts系列, dwd_st_info系列, dwd_st_asin_info系列, dwd_asin_bs_info
table_save_name: dwt_st_info系列
table_save_level: dwt
version: 1.0
created_date: 2022-06-20
updated_date: 2022-06-20
"""

import os
import sys

sys.path.append(os.path.dirname(sys.path[0]))  # 上级目录
from utils.templates import Templates
# from AmazonSpider.pyspark_job.utils.templates import Templates
# 分组排序的udf窗口函数
from pyspark.sql.window import Window
from pyspark.sql import functions as F
from pyspark.sql.types import StringType, IntegerType


class DwtStInfo(Templates):

    def __init__(self, site_name="us", date_type="week", date_info="2022-1"):
        super().__init__()
        self.site_name = site_name
        self.date_type = date_type
        self.date_info = date_info
        self.db_save = f"dwt_st_info"
        self.spark = self.create_spark_object(app_name=f"{self.db_save} {self.site_name}, {self.date_info}")
        self.df_date = self.get_year_week_tuple()
        self.df_save = self.spark.sql(f"select 1+1;")
        self.df_st_info = self.spark.sql(f"select 1+1;")
        self.df_st_counts = self.spark.sql(f"select 1+1;")
        self.df_st_asin_info = self.spark.sql(f"select 1+1;")
        self.df_asin_bs_info = self.spark.sql(f"select 1+1;")
        self.df_asin_detail_info = self.spark.sql(f"select 1+1;")
        self.partitions_by = ['site_name', 'date_type', 'date_info']
        self.reset_partitions(1)
        if self.date_type in ["week", "4_week"]:
            self.partitions_type = "dt"
        elif self.date_type in ["month"]:
            self.partitions_type = "dm"
        elif self.date_type in ["quarter"]:
            self.partitions_type = "dq"
        self.u_get_asin_top = self.spark.udf.register("u_get_asin_top", self.udf_get_asin_top, StringType())
        self.u_year_week = self.spark.udf.register('u_year_week', self.udf_year_week, StringType())
        self.current_date = '2022-10-16'
        print(self.current_date)

    @staticmethod
    def udf_year_week(dt):
        year, week = dt.split("-")[0], dt.split("-")[1]
        if int(week) < 10:
            return f"{year}-0{week}"
        else:
            return f"{year}-{week}"

    @staticmethod
    def udf_get_asin_top(asin1, value1, asin2, value2, asin3, value3, flag):
        """通过分享转化比大小顺序找到对应的asin顺序,从而找到bs分类id"""
        if max(value1, value2, value3) == value1:
            asin_top1 = asin1
            if max(value2, value3) == value2:
                asin_top2 = asin2
                asin_top3 = asin3
            else:
                asin_top2 = asin3
                asin_top3 = asin2
        elif max(value1, value2, value3) == value2:
            asin_top1 = asin2
            if max(value1, value3) == value1:
                asin_top2 = asin1
                asin_top3 = asin3
            else:
                asin_top2 = asin3
                asin_top3 = asin1
        else:
            asin_top1 = asin3
            if max(value1, value2) == value1:
                asin_top2 = asin1
                asin_top3 = asin2
            else:
                asin_top2 = asin2
                asin_top3 = asin1
        if flag == 1:
            return asin_top1
        elif flag == 2:
            return asin_top2
        else:
            return asin_top3

    def read_data(self):
        print("1.1 读取dim_asin_history_info表")
        sql = f"select asin, asin_bs_cate_current_id, asin_bs_orders, " \
              f"asin_launch_time, asin_price as asin1_price, asin_rating as asin1_rating, " \
              f"asin_total_comments as asin1_total_comments from dim_asin_history_info " \
              f"where site_name='{self.site_name}';"
              # f"where site_name='{self.site_name}' and dt in '{self.year_week_tuple}'"
        self.df_asin_bs_info = self.spark.sql(sql).cache()
        self.df_asin_bs_info.show(10, truncate=False)
        print("1.2 读取dwd_st_info系列表")
        sql = f"select * from dwd_st_info " \
              f"where site_name='{self.site_name}' and date_type='{self.date_type}' and date_info = '{self.date_info}';"
        self.df_st_info = self.spark.sql(sql).cache()
        self.df_st_info.show(10, truncate=False)
        print("1.3 读取dwd_st_counts系列表")
        sql = f"select search_term, st_ao_val, st_ao_val_rank, st_ao_val_rate, st_zr_counts, st_sp_counts, " \
              f"st_sb_counts, st_sb1_counts, st_sb2_counts, st_sb3_counts, st_adv_counts, " \
              f"st_ac_counts, st_bs_counts, st_er_counts, st_tr_counts " \
              f" from dwd_st_counts " \
              f"where site_name='{self.site_name}' and date_type='{self.date_type}' and date_info = '{self.date_info}';"
        print("sql:", sql)
        self.df_st_counts = self.spark.sql(sql).cache()
        self.df_st_counts.show(10, truncate=False)
        print("1.4 读取dwd_st_asin_info系列表")
        sql = f"select search_term, asin, st_asin_zr_orders as st_asin_orders, st_asin_zr_orders_sum as st_asin_orders_sum from dwd_st_asin_info " \
              f"where site_name='{self.site_name}' and date_type='{self.date_type}' and date_info = '{self.date_info}';"
        print("sql:", sql)
        self.df_st_asin_info = self.spark.sql(sql).cache()
        self.df_st_asin_info.show(10, truncate=False)

    def handle_data(self):
        self.handle_data_st_ao_val()
        self.handle_data_asin_bs()
        self.handle_data_st_orders()
        self.handle_data_st_cate_current_id()
        self.handle_data_asin_detail()
        self.df_save = self.df_st_info
        self.df_save.show(10, truncate=False)
        # quit()

    def handle_data_st_ao_val(self):
        self.df_st_info = self.df_st_info.join(
            self.df_st_counts, on="search_term", how="left"
        )

    def handle_data_asin_bs(self):
        """
        1. 对self.df_asin_bs_info对象,选择asin最新一周的数据,并删掉不需要的字段
        2. 获取asin
        """
        # self.df_asin_bs_info = self.df_asin_bs_info.withColumn("dt_sort", self.u_year_week("dt"))
        # # self.df_asin_bs_info.filter("asin='B00E4WOQU0'").show()  # 这里没有问题
        # window = Window.partitionBy(["asin"]).orderBy(
        #     self.df_asin_bs_info.asin_bs_cate_current_id.asc_nulls_last(),
        #     self.df_asin_bs_info.dt_sort.desc(),
        # )
        # self.df_asin_bs_info = self.df_asin_bs_info.withColumn("dt_rank", F.row_number().over(window=window))
        #     # select("asin", "asin_bs_cate_current_id", "asin_bs_orders")
        # self.df_asin_bs_info = self.df_asin_bs_info.filter("dt_rank=1")
        # self.df_asin_bs_info = self.df_asin_bs_info.drop("dt", "dt_sort", "dt_rank")
        # 上面是修改后的注释内容
        # self.df_asin_bs_info.filter("asin='B00E4WOQU0'").show()
        # 获取新品的判定
        self.df_asin_bs_info = self.df_asin_bs_info.withColumn("current_date", F.lit(self.current_date))
        self.df_asin_bs_info = self.df_asin_bs_info.withColumn("days_diff",
                                                               F.datediff("current_date", "asin_launch_time"))
        self.df_asin_bs_info = self.df_asin_bs_info.withColumn(
            "asin_new_flag",
            F.when(
                self.df_asin_bs_info.days_diff > 180, 0
            ).when(
                self.df_asin_bs_info.days_diff > 0, 1
            ).otherwise(2)
        )
        self.df_asin_bs_info.show(10, truncate=False)

    def handle_data_st_orders(self):
        """
        计算关键词维度的st_asin_bs_orders_sum和st_asin_orders_sum
        """
        self.df_st_asin_info = self.df_st_asin_info.join(
            self.df_asin_bs_info.select("asin", "asin_bs_orders", "asin_new_flag"), on="asin", how="left"
        )

        # df_st_search_sum = self.df_st_asin_info.groupby(['search_term']). \
        #     agg({"st_search_sum": "max"})
        # df_st_search_sum = df_st_search_sum.withColumnRenamed("max(st_search_sum)", "st_search_sum")
        self.df_st_asin_info = self.df_st_asin_info.withColumnRenamed("asin_bs_orders", "st_asin_bs_orders")
        df_st_asin_bs_orders_sum = self.df_st_asin_info.groupby(['search_term']). \
            agg({"st_asin_bs_orders": "sum"})
        df_st_asin_bs_orders_sum = df_st_asin_bs_orders_sum.withColumnRenamed("sum(st_asin_bs_orders)",
                                                                              "st_asin_bs_orders_sum")
        df_st_asin_orders_sum = self.df_st_asin_info.groupby(['search_term']). \
            agg({"st_asin_orders_sum": "max", "asin": "count"})
        # df_st_asin_orders_sum.show(10, truncate=False)
        df_st_asin_orders_sum = df_st_asin_orders_sum.withColumnRenamed("max(st_asin_orders_sum)", "st_asin_orders_sum")
        df_st_asin_orders_sum = df_st_asin_orders_sum.withColumnRenamed("count(asin)", "st_asin_counts")
        df_st_asin_new_orders_sum = self.df_st_asin_info.filter("asin_new_flag = 1").groupby(['search_term']). \
            agg({"st_asin_orders": "sum", "asin": "count"})
        df_st_asin_new_orders_sum = df_st_asin_new_orders_sum.withColumnRenamed("sum(st_asin_orders)", "st_asin_new_orders_sum")
        df_st_asin_new_orders_sum = df_st_asin_new_orders_sum.withColumnRenamed("count(asin)", "st_asin_new_counts")
        # df_st_asin_new_orders_sum.show(10, truncate=False)
        self.df_st_info = self.df_st_info.join(
            df_st_asin_bs_orders_sum, on="search_term", how="left"
        ).join(
            df_st_asin_orders_sum, on="search_term", how="left"
        ).join(
            df_st_asin_new_orders_sum, on="search_term", how="left"
        )
        self.df_st_info = self.df_st_info.withColumn("st_asin_new_orders_rate", self.df_st_info.st_asin_new_orders_sum/self.df_st_info.st_asin_orders_sum)
        self.df_st_info = self.df_st_info.withColumn("st_asin_new_counts_rate", self.df_st_info.st_asin_new_counts/self.df_st_info.st_asin_counts)

    def handle_data_st_cate_current_id(self):
        """
        计算关键词维度的bs榜单的当前分类id(关键词通过3个asin,找到bs的当前分类id)
        """
        self.df_st_info = self.df_st_info.withColumn(
            "st_asin_top1",
            self.u_get_asin_top(
                "st_asin1", "st_conversion_share1",
                "st_asin2", "st_conversion_share2",
                "st_asin3", "st_conversion_share3",
                F.lit(1)
            )
        ).withColumn(
            "st_asin_top2",
            self.u_get_asin_top(
                "st_asin1", "st_conversion_share1",
                "st_asin2", "st_conversion_share2",
                "st_asin3", "st_conversion_share3",
                F.lit(2)
            )
        ).withColumn(
            "st_asin_top3",
            self.u_get_asin_top(
                "st_asin1", "st_conversion_share1",
                "st_asin2", "st_conversion_share2",
                "st_asin3", "st_conversion_share3",
                F.lit(3)
            )
        )
        # self.df_st_info.show(10, truncate=False)
        df1 = self.df_st_info.select("search_term", "st_asin_top1").withColumnRenamed("st_asin_top1", "asin").withColumn(
            "type", F.lit(1))
        df2 = self.df_st_info.select("search_term", "st_asin_top2").withColumnRenamed("st_asin_top2", "asin").withColumn(
            "type", F.lit(2))
        df3 = self.df_st_info.select("search_term", "st_asin_top3").withColumnRenamed("st_asin_top3", "asin").withColumn(
            "type", F.lit(3))
        df = df1.unionByName(df2, allowMissingColumns=True).unionByName(df3, allowMissingColumns=True)
        df = df.join(self.df_asin_bs_info.select("asin", "asin_bs_cate_current_id"), on='asin', how="left")
        # df.show(10, truncate=False)
        # df.filter("asin='B00E4WOQU0'").show()
        window = Window.partitionBy(["search_term"]).orderBy(
            df.type.asc_nulls_last()
        )
        df = df.withColumn("type_rank", F.row_number().over(window=window)). \
            select("search_term", "asin_bs_cate_current_id").filter("type_rank=1")
        # df.show(10, truncate=False)
        # df.filter("asin='B00E4WOQU0'").show()
        self.df_st_info = self.df_st_info.join(df, on="search_term", how="left")
        self.df_st_info = self.df_st_info.withColumnRenamed("asin_bs_cate_current_id", "st_asin_bs_cate_current_id")

    def handle_data_asin_detail(self):
        # self.df_st_info = self.df_st_info.join(self.df_asin_detail_info, on="st_asin1", how="left")
        self.df_st_info = self.df_st_info.join(
            self.df_asin_bs_info.select("asin", "asin_bs_orders", "asin1_price", "asin1_rating", "asin1_total_comments").withColumnRenamed("asin", "st_asin1"), on="st_asin1", how="left"
        ).withColumnRenamed("asin_bs_orders", "st_asin1_bs_orders")
        # self.df_asin_bs_info.select("asin", "asin_bs_orders").withColumnRenamed("asin","st_asin1"), on = "st_asin1", how = "left"


if __name__ == '__main__':
    site_name = sys.argv[1]  # 参数1:站点
    date_type = sys.argv[2]  # 参数2:类型:week/4_week/month/quarter
    date_info = sys.argv[3]  # 参数3:年-周/年-月/年-季, 比如: 2022-1
    handle_obj = DwtStInfo(site_name=site_name, date_type=date_type, date_info=date_info)
    handle_obj.run()