dim_profit_config.py 7.65 KB
Newer Older
chenyuanjie committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
import os
import sys

sys.path.append(os.path.dirname(sys.path[0]))
from utils.common_util import CommonUtil
from utils.db_util import DBUtil
from utils.hdfs_utils import HdfsUtils
from pyspark.sql.types import DoubleType, StringType
from utils.spark_util import SparkUtil
from pyspark.sql import functions as F
from yswg_utils.common_df import get_bsr_tree_full_name_df

"""
利润率相关配置表
"""


class DimProfitConfig(object):

    def __init__(self, site_name):
        app_name = f"{self.__class__.__name__}"
        self.spark = SparkUtil.get_spark_session(app_name)
        self.udf_parse_num_reg = F.udf(self.udf_parse_num, DoubleType())
        self.udf_lower_category_name_reg = F.udf(self.udf_lower_category_name, StringType())
        self.hive_tb = "dim_profit_config"
        self.site_name = site_name
        pass

    @staticmethod
    def udf_parse_num(num: str):
        if num is None:
            return None
        return round(float(num.replace("%", "")) / 100, 4)

    @staticmethod
    def udf_lower_category_name(category_name: str):
        if category_name is None:
            return None
        category_name = category_name.replace("_", "")
        category_name = category_name.replace("&", "")
        category_name = category_name.replace("\"", "")
        category_name = category_name.replace(",", "")
        category_name = category_name.replace("'", "")
        category_name = category_name.replace(" ", "")
        return category_name.lower()

    def run(self):
        name_df = get_bsr_tree_full_name_df(self.site_name, self.spark) \
            .select(
            F.expr("replace(full_name,' ', '')").alias("full_name"),
            F.col("category_id"),
            F.col("en_name").alias("category_name"),
            F.col("category_first_id"),
        )

        sql_old = f"""
with old_tb as (
	select replace(asin_category_desc, " ", "") as full_name,
		   node_id                              as category_id,
		   category_first_id
	from dim_category_desc_id
	where site_name='us' and asin_category_desc is not null
),
	 name_tb as (
		 select category_id, max(en_name) as en_name
		 from dim_bsr_category_tree
		 where site_name = '{self.site_name}'
		 group by category_id
	 )
select old_tb.full_name,
	   old_tb.category_id,
	   name_tb.en_name as category_name,
	   old_tb.category_first_id
from old_tb
		 left join name_tb on old_tb.category_id = name_tb.category_id
"""
        old_name_df = self.spark.sql(sql_old)
        # 去重
        name_df = name_df.unionByName(old_name_df).drop_duplicates(['full_name'])
        name_df = name_df.withColumn("category_name_low", self.udf_lower_category_name_reg(F.col("category_name")))
        sql = f"""
        select name as full_name, cost, avg_cost
        from us_profit_cost_new
"""

        conn_info = DBUtil.get_connection_info("postgresql", "us")
        profit_cost_df = SparkUtil.read_jdbc_query(
            session=self.spark,
            url=conn_info["url"],
            pwd=conn_info["pwd"],
            username=conn_info["username"],
            query=sql
        ).cache()

        sql = f"""
            select categoy_name as category_name,
                   calc_type,
                   config_json as fba_config_json,
                   referral_fee_formula
            from us_profit_fba_config
"""

        conn_info = DBUtil.get_connection_info("postgresql", "us")
        fba_config_df = SparkUtil.read_jdbc_query(
            session=self.spark,
            url=conn_info["url"],
            pwd=conn_info["pwd"],
            username=conn_info["username"],
            query=sql
        ).cache()
        #  fba 相关
        fba_config_df = fba_config_df.join(name_df, on=['category_name'], how='left').select(
            F.col("category_name"),
            F.col("calc_type"),
            F.col("fba_config_json"),
            F.col("referral_fee_formula"),
            F.col("category_id"),
            F.col("category_first_id"),
        ).drop_duplicates(['category_id', 'category_first_id'])

        # 广告配置项
        sql = f"""
            select category as category_name,
                   adv
            from us_profit_adv
"""

        conn_info = DBUtil.get_connection_info("postgresql", "us")
        adv_config_df = SparkUtil.read_jdbc_query(
            session=self.spark,
            url=conn_info["url"],
            pwd=conn_info["pwd"],
            username=conn_info["username"],
            query=sql
        ).cache()

        # 退款率原始数据
        sql = f"""
       	 select category as category_name,
				round(avg(return_ratio), 4) as return_ratio
		 from us_aba_profit_category_insights
		 where year_week = '2023-22'
		 group by category
"""

        conn_info = DBUtil.get_connection_info("postgresql", "us")
        return_config_df = SparkUtil.read_jdbc_query(
            session=self.spark,
            url=conn_info["url"],
            pwd=conn_info["pwd"],
            username=conn_info["username"],
            query=sql
        ).cache()
        return_config_df = return_config_df.withColumn("category_name_low", self.udf_lower_category_name_reg(F.col("category_name")))
        # 关联
        return_config_df = return_config_df.join(name_df, on=['category_name_low'], how='left').select(
            name_df["category_name"].alias("category_name"),
            F.col("return_ratio"),
            F.col("category_id"),
            F.col("category_first_id"),
        ).drop_duplicates(['category_id', 'category_first_id'])
        # return_config_df.show(truncate=False)

        #  fba 相关
        adv_config_df = adv_config_df.join(name_df, on=['category_name'], how='left').select(
            F.col("category_name"),
            F.col("adv"),
            F.col("category_id"),
            F.col("category_first_id"),
        ).drop_duplicates(['category_id', 'category_first_id'])

        profit_cost_df = profit_cost_df.join(name_df, on=['full_name'], how='left').select(
            F.col("full_name"),
            name_df['category_name'].alias("category_name"),
            self.udf_parse_num_reg(F.col("cost")).alias("cost"),
            self.udf_parse_num_reg(F.col("avg_cost")).alias("avg_cost"),
            F.col("category_id"),
            F.col("category_first_id"),
        ).drop_duplicates(['category_id', 'category_first_id'])

        # 退款todo
        df_save = profit_cost_df \
            .join(fba_config_df, on=['category_id', 'category_first_id'], how='fullouter') \
            .join(adv_config_df, on=['category_id', 'category_first_id'], how='fullouter') \
            .join(return_config_df, on=['category_id', 'category_first_id'], how='fullouter') \
            .select(
            # 分类
            F.col("full_name"),
            F.coalesce(
                profit_cost_df['category_name'],
                fba_config_df['category_name'],
                adv_config_df['category_name']
            ).alias("category_name"),

            F.col("category_id"),
            F.col("category_first_id"),
            #  成本
            F.col("cost"),
            F.col("avg_cost"),
            #  fba计算配置类型
            F.col("calc_type"),
            F.col("fba_config_json"),
            F.col("referral_fee_formula"),
            # 广告
            F.col("adv"),
            # 退款率
            F.col("return_ratio"),
            F.lit(self.site_name).alias("site_name")
        )

        df_save = df_save.repartition(1)
        partition_dict = {
            "site_name": self.site_name,
        }
        #  删除或更新
        CommonUtil.save_or_update_table(self.spark, self.hive_tb, partition_dict, df_save)
        pass


if __name__ == '__main__':
    site_name = CommonUtil.get_sys_arg(1, None)
    obj = DimProfitConfig(site_name)
    obj.run()