dwt_st_market.py 10.8 KB
Newer Older
chenyuanjie committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
import os
import sys

sys.path.append(os.path.dirname(sys.path[0]))
from pyspark.sql.types import StringType, MapType
from utils.common_util import CommonUtil, DateTypes
from utils.hdfs_utils import HdfsUtils
from utils.spark_util import SparkUtil
from pyspark.sql import functions as F
from utils.templates import Templates
import numpy as np

"""
获取搜索词 市场周期类型 相关指标
依赖 dim_st_detail 表 输出为 Dwt_st_market
"""


class DwtStMarket(Templates):
    def __init__(self, site_name, date_type, date_info):
        super().__init__()
        self.site_name = site_name
        self.date_type = date_type
        self.date_info = date_info
        app_name = f"{self.__class__.__name__}:{site_name}:{date_type}:{date_info}"
        self.spark = SparkUtil.get_spark_session(app_name)

        self.last_12_month = self.get_last_12_month()
        self.df_st = self.spark.sql("select 1+1;")
        self.df_st_detail = self.spark.sql("select 1+1;")
        self.df_st_id = self.spark.sql("select 1+1;")
        self.df_joined = self.spark.sql("select 1+1;")
        self.df_save = self.spark.sql("select 1+1;")

    @staticmethod
    def udf_market_fun_reg(last_12_month: list):
        def udf_market_fun(rows: list):
            index_map = {}
            for i, val in enumerate(last_12_month):
                index_map[val] = str(i)
                pass

            row_map = {}
            for row in rows:
                row_map[index_map[row['date_info']]] = row
                pass

            # 默认值都是一般市场
            market_cycle_type = 4
            # 计算市场
            max_avg_val = 0

            result_val = {}
            rate_list = []
            for key in row_map:
                month_seq = int(key) + 1
                row = row_map.get(key)

                vol_val = row['st_search_num']
                rank_val = row['st_rank']
                if rank_val is not None:
                    result_val[f"rank_{month_seq}"] = str(rank_val)
                    pass

                if vol_val is not None:
                    result_val[f"rank_{month_seq}_search_volume"] = str(vol_val)
                    pass

                # 计算最近6个月的月搜索量增长率
                if month_seq < 6:
                    last_month_row = row_map.get(str(int(key) + 1))
                    if last_month_row is not None:
                        last_vol_val = last_month_row['st_search_num']
                        if last_vol_val is not None and vol_val is not None:
                            # 增长率=(本月-上月)/上月
                            rate = round((float(vol_val) - float(last_vol_val)) / float(last_vol_val), 4)
                            result_val[f"month_growth_rate_{month_seq}"] = str(rate)
                            rate_list.append(rate)
                        pass

                value = [row['st_search_num'] for row in rows]
                # 平均值
                avg_val = round(np.sum(value) / 12, 4)
                # 最大值
                max_val = np.max(value)
                max_avg_val = round((max_val - avg_val) / avg_val, 4)

                if max_avg_val > 0.8:
                    if len([rate for rate in rate_list if rate >= 0.05]) >= 5:
                        # 5 季节性市场+持续增长市场
                        market_cycle_type = 5
                    elif len([rate for rate in rate_list if rate <= -0.05]) >= 5:
                        # 6 季节性市场+持续衰退市场
                        market_cycle_type = 6
                    else:
                        # 1 季节性市场:该关键词最近12个月的 月搜索量,按照搜索量降序排列,取得最高搜索量 h1,如果(h1-平均值)/平均值>0.8,则该市场为季节性市场
                        market_cycle_type = 1
                else:
                    #  2 持续增长市场:该关键词最近6个月有5-6个月,月搜索量增长率大于5%的市场
                    if len([rate for rate in rate_list if rate >= 0.05]) >= 5:
                        market_cycle_type = 2
                    #  3:持续衰退市场:词最近6个月有5-6个月,月搜索量增长率小于-5%的市场
                    elif len([rate for rate in rate_list if rate <= -0.05]) >= 5:
                        market_cycle_type = 3
                    else:
                        market_cycle_type = 4
                pass

            result_val['market_cycle_type'] = str(market_cycle_type)
            result_val['max_avg_val'] = str(max_avg_val)
            result_val['start_month'] = str(last_12_month[0])
            result_val['end_month'] = str(last_12_month[11])

            return result_val

        return F.udf(udf_market_fun, MapType(StringType(), StringType()))

    def get_repartition_num(self):
        if DateTypes.last365day.name == self.date_type:
            return 4
        if DateTypes.month.name == self.date_type or DateTypes.month_week.name == self.date_type:
            return 3
        if DateTypes.month_old.name == self.date_type:
            return 2
        return 10

    def get_last_12_month(self):
        last_12_month = []
        for i in range(0, 12):
            last_12_month.append(CommonUtil.get_month_offset(self.date_info, -i))
        return last_12_month

    def read_data(self):
        sql1 = f"""
            select 
                search_term
            from dwd_st_measure
            where site_name = '{self.site_name}'
            and date_type = '{self.date_type}'
            and date_info = '{self.date_info}';
        """
        self.df_st = self.spark.sql(sql1).repartition(40, 'search_term').cache()
        self.df_st.show(10, truncate=True)

        sql2 = f"""
            select 
                search_term,
                st_search_num,
                date_info,
                st_rank
            from dim_st_detail
            where site_name = '{self.site_name}'
            and date_type = '{self.date_type}'
            and date_info in ({CommonUtil.list_to_insql(self.last_12_month)})
            and st_search_num is not null;
        """
        self.df_st_detail = self.spark.sql(sql2).repartition(40, 'search_term').cache()
        self.df_st_detail.show(10, truncate=True)

        sql3 = f"""
            select 
                cast(st_key as integer) as search_term_id, 
                search_term 
            from ods_st_key 
            where site_name ='{self.site_name}';
        """
        self.df_st_id = self.spark.sql(sql3).repartition(40, 'search_term').cache()
        self.df_st_id.show(10, truncate=True)

    def handle_data(self):
        self.df_joined = self.df_st.join(
            self.df_st_detail, on='search_term', how='inner'
        )
        self.df_joined = self.df_joined.groupby('search_term').agg(
            self.udf_market_fun_reg
            (self.last_12_month)
            (F.collect_list(F.struct("date_info", "st_search_num", "st_rank"))).alias("cal_map")
        )
        self.df_save = self.df_joined.join(
            self.df_st_id, on='search_term', how='inner'
        ).select(
            F.col("search_term_id"),
            F.col("search_term_id").alias("id"),
            F.col("search_term"),
            F.col("cal_map").getField("start_month").alias("start_month"),
            F.col("cal_map").getField("end_month").alias("end_month"),
            F.col("cal_map").getField("market_cycle_type").alias("market_cycle_type"),
            F.col("cal_map").getField("rank_1").alias("rank_1"),
            F.col("cal_map").getField("rank_2").alias("rank_2"),
            F.col("cal_map").getField("rank_3").alias("rank_3"),
            F.col("cal_map").getField("rank_4").alias("rank_4"),
            F.col("cal_map").getField("rank_5").alias("rank_5"),
            F.col("cal_map").getField("rank_6").alias("rank_6"),
            F.col("cal_map").getField("rank_7").alias("rank_7"),
            F.col("cal_map").getField("rank_8").alias("rank_8"),
            F.col("cal_map").getField("rank_9").alias("rank_9"),
            F.col("cal_map").getField("rank_10").alias("rank_10"),
            F.col("cal_map").getField("rank_11").alias("rank_11"),
            F.col("cal_map").getField("rank_12").alias("rank_12"),
            F.col("cal_map").getField("rank_1_search_volume").alias("rank_1_search_volume"),
            F.col("cal_map").getField("rank_2_search_volume").alias("rank_2_search_volume"),
            F.col("cal_map").getField("rank_3_search_volume").alias("rank_3_search_volume"),
            F.col("cal_map").getField("rank_4_search_volume").alias("rank_4_search_volume"),
            F.col("cal_map").getField("rank_5_search_volume").alias("rank_5_search_volume"),
            F.col("cal_map").getField("rank_6_search_volume").alias("rank_6_search_volume"),
            F.col("cal_map").getField("rank_7_search_volume").alias("rank_7_search_volume"),
            F.col("cal_map").getField("rank_8_search_volume").alias("rank_8_search_volume"),
            F.col("cal_map").getField("rank_9_search_volume").alias("rank_9_search_volume"),
            F.col("cal_map").getField("rank_10_search_volume").alias("rank_10_search_volume"),
            F.col("cal_map").getField("rank_11_search_volume").alias("rank_11_search_volume"),
            F.col("cal_map").getField("rank_12_search_volume").alias("rank_12_search_volume"),
            F.col("cal_map").getField("month_growth_rate_1").alias("month_growth_rate_1"),
            F.col("cal_map").getField("month_growth_rate_2").alias("month_growth_rate_2"),
            F.col("cal_map").getField("month_growth_rate_3").alias("month_growth_rate_3"),
            F.col("cal_map").getField("month_growth_rate_4").alias("month_growth_rate_4"),
            F.col("cal_map").getField("month_growth_rate_5").alias("month_growth_rate_5"),
            F.col("cal_map").getField("month_growth_rate_6").alias("month_growth_rate_6"),
            F.col("cal_map").getField("max_avg_val").alias("max_avg_val"),
            F.lit(self.site_name).alias("site_name"),
            F.lit(self.date_type).alias("date_type"),
            F.lit(self.date_info).alias("date_info")
        )

    def save_data(self):
        db_save = "dwt_st_market"
        partitions_by = ["site_name", "date_type", "date_info"]
        hdfs_path = f"/home/{SparkUtil.DEF_USE_DB}/dwt/{db_save}/site_name={self.site_name}/date_type={self.date_type}/date_info={self.date_info}"
        print(f"清除hdfs目录中.....{hdfs_path}")
        HdfsUtils.delete_file_in_folder(hdfs_path)
        print("当前存储的表名为:", db_save)
        self.df_save = self.df_save.repartition(self.get_repartition_num())
        self.df_save.write.saveAsTable(name=db_save, format='hive', mode='append', partitionBy=partitions_by)


if __name__ == '__main__':
    site_name = CommonUtil.get_sys_arg(1, None)
    date_type = CommonUtil.get_sys_arg(2, None)
    date_info = CommonUtil.get_sys_arg(3, None)
    obj = DwtStMarket(site_name, date_type, date_info)
    obj.run()