dwt_st_theme_agg.py 33.9 KB
Newer Older
chenyuanjie committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
import os
import sys
from collections import Counter

import inflect
import re
from textblob import TextBlob
from textblob import Word

sys.path.append(os.path.dirname(sys.path[0]))
from functools import reduce
from pyspark.sql import DataFrame
from pyspark.sql.window import Window
from pyspark.sql.types import StringType, MapType, IntegerType, StructType, StructField, DoubleType
from utils.common_util import CommonUtil, DateTypes
from utils.hdfs_utils import HdfsUtils
from utils.spark_util import SparkUtil
from utils.db_util import DBUtil
from pyspark.sql import functions as F
from yswg_utils.common_udf import udf_ele_mattch
import numpy as np


class DwtStThemeAgg(object):
    def __init__(self, site_name, date_type, date_info):
        self.site_name = site_name
        self.date_type = date_type
        self.date_info = date_info
        self.hive_tb = "dwt_st_theme_agg"
        # self.hive_tb = "tmp_st_theme_agg"
        self.partition_dict = {
            "site_name": site_name,
            "date_type": date_type,
            "date_info": date_info
        }
        # 落表路径校验
        # self.hdfs_path = CommonUtil.build_hdfs_path(self.hive_tb, partition_dict=self.partition_dict)

        # 创建spark_session对象相关
        app_name = f"{self.__class__.__name__}:{site_name}:{date_info}"
        self.spark = SparkUtil.get_spark_session(app_name)

        # 注册自定义函数 (UDF)
        self.u_theme_pattern = F.udf(udf_ele_mattch, StringType())
        self.u_theme_contain_judge = F.udf(self.udf_theme_contain_judge, IntegerType())
        self.u_judge_twin_words = F.udf(self.udf_judge_twin_words, IntegerType())
        self.u_filter_sec_pattern_words = F.udf(self.udf_filter_sec_pattern_words, IntegerType())

        # self.u_split_words = F.udf(self.udf_split_words, StringType())

        # 全局df初始化
        self.df_st_base = self.spark.sql(f"select 1+1;")
        self.df_base_filter_date = self.spark.sql(f"select 1+1;")
        self.df_pattern_words_base = self.spark.sql(f"select 1+1;")
        self.df_sec_words = self.spark.sql(f"select 1+1;")
        self.df_third_words = self.spark.sql(f"select 1+1;")
        self.df_theme = self.spark.sql(f"select 1+1;")
        self.df_st_theme = self.spark.sql(f"select 1+1;")
        self.df_st_theme_base = self.spark.sql(f"select 1+1;")
        self.df_st_theme_vertical = self.spark.sql(f"select 1+1;")
        self.df_st_filter = self.spark.sql(f"select 1+1;")
        self.df_pattern_st_agg = self.spark.sql(f"select 1+1;")
        self.df_pattern_st_words = self.spark.sql(
            f"select null as pattern_st,id as st_key,search_term,bsr_orders from dwt_aba_st_analytics limit 0;")
        self.combine_df = self.spark.sql(
            f"select id as st_key,search_term,bsr_orders,'' as pattern_st from dwt_aba_st_analytics limit 0;")
        self.df_st_theme_agg = self.spark.sql(f"select 1+1;")
        self.df_st_topic_base = self.spark.sql(f"select 1+1;")
        self.df_st_match_topic_detail = self.spark.sql(f"select 1+1;")
        self.df_st_match_topic_agg = self.spark.sql(f"select 1+1;")
        self.df_match_brand = self.spark.sql(f"select 1+1;")
        self.df_match_blacklist = self.spark.sql(f"select 1+1;")



        # 其他变量
        self.brand_pattern = str()  # 正则匹配
        self.theme_list_str = str()  # 正则匹配
        self.st_word_list = []

    @staticmethod
    def udf_unionAll(*dfs):
        return reduce(DataFrame.unionAll, dfs)



    @staticmethod
    def udf_theme_contain_judge(pattern_word, pattern_list):
        count = sum(1 for word in pattern_list if pattern_word in word)
        # 如果匹配到的pattern_word大于1则说明有已经匹配过的单词
        return 0 if count > 1 else 1

    @staticmethod
    def udf_inflect_word():
        p = inflect.engine()

        def udf_split_words(st_word):
            words = st_word.split(" ")
            word_list = []
            for word in words:
                word_list.append(word)
                word_list.append(p.plural(word))
            word_list.sort()
            return ','.join(set(word_list))

        return F.udf(udf_split_words, StringType())

    @staticmethod
    def udf_word_restoration():
        def udf_restoration_words(st_word):
            word_list = []
            blob = TextBlob(st_word)
            for word in blob.words:
                word_list.append(word.lemmatize())
            word_list.sort()
            return ','.join(set(word_list))

        return F.udf(udf_restoration_words, StringType())

    @staticmethod
    def udf_judge_twin_words(st_word):
        words = st_word.split(" ")
        judge_flag = 0
        # 先判断是否完全一致的同属性叠词,如gun gun;这种用户不需要
        if len(set(words)) == 1:
            judge_flag = 1
        return judge_flag


    @staticmethod
    def udf_theme_regex(pattern):

        def udf_theme_pattern(match_text):
            ele_list = re.findall(pattern, match_text)
            if ele_list:
                return ','.join(set(ele_list))
            else:
                return None
        return F.udf(udf_theme_pattern, StringType())

    @staticmethod
    def st_word_filter_condition(search_term):
        base_keywords = search_term.split(" ")
        # 生成排序后的单数和复数列表
        singular_plural_list = []
        for word in base_keywords:
            sort_list = [word, CommonUtil.convert_singular_plural(word)]
            sort_list.sort()
            singular_plural_word = "|".join(sort_list)
            singular_plural_list.append(singular_plural_word)

        # 统计排序后的单数和复数的词频
        condition_counts = Counter(singular_plural_list)

        # 构建重复词和唯一词的条件
        result_condition = ""
        condition_list = []
        for word, count in condition_counts.items():
            word_condition = f"search_term rlike '\\\\b({word})\\\\b"
            word_condition += "".join([f".*\\\\b({word})\\\\b" for _ in range(count - 1)]) + "'"

            if count > 1:
                condition_list.append(word_condition)
            else:
                condition_list.append(word_condition)
        if condition_list:
            result_condition = (" and ").join(condition_list)
        return result_condition

    @staticmethod
    def filter_blacklist_words(blacklist):
        # 获取二三级词包含词黑名单
        pd_contain_list = blacklist.loc[blacklist.specical_match_type == '1']
        contain_word_list = list(pd_contain_list.st_blacklist_word_lower)
        contain_word_pattern = re.compile(
            r'(?<!\+|\*|\-|\%|\.)\b({})\b'.format('|'.join([re.escape(x) for x in contain_word_list])),
            flags=re.IGNORECASE)
        # 获取二三级词搜索词黑名单
        pd_st_blacklist = blacklist.loc[blacklist.specical_match_type == '2']
        st_blacklist = list(pd_st_blacklist.st_blacklist_word_lower)

        def udf_filter_blacklist(st_word):
            # 包含词匹配
            black_flag = 0
            pattern_flag = re.search(contain_word_pattern, st_word)
            if pattern_flag:
                black_flag = 1
            # 黑名单词匹配--此处不能使用二元表达,重新置为 0
            if black_flag == 0:
                if st_word in st_blacklist:
                    black_flag = 1
            return black_flag

        return F.udf(udf_filter_blacklist, IntegerType())

    @staticmethod
    def udf_filter_sec_pattern_words(st_word, pattern_list):
        # 标记一些特殊情况指定的二级词,方便后期过滤
        filter_flag = 0
        theme_list = ['combination', 'size']
        if pattern_list:
            if any(theme in str(pattern_list) for theme in theme_list):
                # 说明匹配到了组合和size两种匹配词,则需要给标记
                return 1
        # 进行单项 数字+month/months的所有二级词 和 数字连接t+ boys/girls的二级词特殊匹配
        date_pattern = re.compile(r"(\d+(?:\.\d+)?) +(month|months)\b", flags=re.IGNORECASE)
        numt_pattern = re.compile("r'((?:\d+)t)(?: +)(boys|girls|boy|girl)\b'", flags=re.IGNORECASE)
        for_pattern = re.compile(r"\bfor\b", flags=re.IGNORECASE)
        if re.search(date_pattern, st_word):
            return 1
        if re.search(numt_pattern, st_word):
            return 1
        if re.search(for_pattern, st_word):
            return 1
        return filter_flag


    def read_data(self):
        print("======================查询sql如下======================")
        # 获取搜索词基础数据
        sql = f"""
                        select 
                            id as st_key,
                            lower(search_term) search_term,
                            bsr_orders
                        from dwt_aba_st_analytics
                        where site_name = '{self.site_name}'
                          and date_type = '{self.date_type}'
                          and date_info = '{self.date_info}'
                          and st_bsr_cate_1_id_new is not null
                          and st_bsr_cate_1_id_new not in ("audible", "books","digital-text","dmusic","mobile-apps","movies-tv","music","software","videogames")
            """
        print(sql)
        self.df_st_base = self.spark.sql(sql).cache()
        # self.df_st_base.show(10, truncate=False)

        # 获取搜索的二级词和三级词原始过滤数据
        sql = f"""
            select search_term,st_word_num,rank,st_brand_label from (
                  select search_term,
                         regexp_replace(search_term,' ','') as search_term_without_space,
                         st_word_num,
                         rank,
                         st_movie_label,
                         st_brand_label
                  from dwt_aba_st_analytics
                  where site_name = '{site_name}'
                    and date_type = '{date_type}'
                    and date_info = '{date_info}'
                    and st_bsr_cate_1_id_new is not null
                    and st_bsr_cate_1_id_new not in
                        ("audible", "books", "digital-text", "dmusic", "mobile-apps", "movies-tv", "music", "software",
                         "videogames")
                    and st_word_num <= 3
                    and st_word_num >= 2
                    and st_movie_label < 3
                    and st_brand_label <= 1
                ) t1
            where search_term_without_space rlike '^[0-9a-zA-Z]*$'
        """
        self.df_pattern_words_base = self.spark.sql(sql)
        # 提前处理给叠词打上标签,并对不需要的叠词直接过滤
        self.df_pattern_words_base = self.df_pattern_words_base.withColumn('twin_words_flag',self.u_judge_twin_words(F.col('search_term')))
        self.df_pattern_words_base = self.df_pattern_words_base.filter(" twin_words_flag == 0").cache()

        sql = f"""
            select 
               st_key, 
               search_term, 
               theme_ch, 
               theme_en, 
               theme_label_ch, 
               theme_label_en,
               pattern_type,
               theme_label_num_info,
               theme_label_unit_info 
            from big_data_selection.dws_st_theme
            where site_name = '{self.site_name}'
              and date_type = '{self.date_type}'
              and date_info = '{self.date_info}'
        """
        self.df_st_theme_base = self.spark.sql(sql).cache()

        # 获取主题词
        sql = f"""
                    select  
                        search_term, 
                        concat_ws(",",collect_list(theme_label_en)) as pattern_list
                    from big_data_selection.dws_st_theme
                    where site_name = '{self.site_name}'
                      and date_type = '{self.date_type}'
                      and date_info = '{self.date_info}'
                    group by st_key,search_term
                                """
        self.df_theme = self.spark.sql(sql).cache()

        # sql获取最终品牌词匹配需保留得品牌词库
        pg_sql = f"""
                    select lower(trim(character_name)) as st_brand_name_lower 
                             from match_character_dict where match_type = '二三级词专用品牌词库'
                """
        conn_info = DBUtil.get_connection_info("mysql", "us")
        self.df_match_brand = SparkUtil.read_jdbc_query(
            session=self.spark,
            url=conn_info["url"],
            pwd=conn_info["pwd"],
            username=conn_info["username"],
            query=pg_sql
        )

        pdf_match_brand = self.df_match_brand.toPandas()
        match_brand = list(set(pdf_match_brand.st_brand_name_lower))
        self.brand_pattern = re.compile(r'(?<!\+|\*|\-|\%|\.)\b({})\b'.format('|'.join([re.escape(x) for x in match_brand])),
                                  flags=re.IGNORECASE)

        # sql获取二三级词黑名单库
        pg_sql = f"""
                            select lower(trim(character_name)) as st_blacklist_word_lower,specical_match_type 
                                     from match_character_dict where match_type = '二三级词匹配黑名单'
                        """
        conn_info = DBUtil.get_connection_info("mysql", "us")
        self.df_match_blacklist = SparkUtil.read_jdbc_query(
            session=self.spark,
            url=conn_info["url"],
            pwd=conn_info["pwd"],
            username=conn_info["username"],
            query=pg_sql
        )

    def handle_data(self):
        self.read_data()
        self.handle_base_pattern_data()
        self.handle_sec_st()
        self.handle_third_st()
        self.handle_st_filter_table()
        self.handle_st_pattern_common_agg()
        self.handle_st_pattern_special_agg()
        self.save_data()

    # 处理二级词和三级词的通用逻辑
    def handle_base_pattern_data(self):
        # 用于处理二级词和三级词条件一致的逻辑
        self.df_base_filter_date = self.df_pattern_words_base
        self.df_base_filter_date = self.df_base_filter_date.withColumn('similar_word_list',
                                                                       self.udf_inflect_word()(F.col('search_term')))
        similar_words_window = Window.partitionBy(["similar_word_list"]).orderBy(
            self.df_base_filter_date.rank.asc_nulls_last()
        )
        self.df_base_filter_date = self.df_base_filter_date.withColumn('row_num',
                                                                       F.row_number().over(window=similar_words_window))
        # CommonUtil.df_export_csv(self.spark, self.df_sec_words, 'export_sec_words_2023_10_26_detail', 100 * 10000)
        self.df_base_filter_date = self.df_base_filter_date.filter("row_num=1")
        self.df_base_filter_date = self.df_base_filter_date.drop(*['similar_word_list', 'row_num'])
        # 第二次过滤相似词 采用textblob词库词性还原方式过滤
        self.df_base_filter_date = self.df_base_filter_date.withColumn('similar_word_list',
                                                                       self.udf_word_restoration()(
                                                                           F.col('search_term')))
        similar_words_window = Window.partitionBy(["similar_word_list"]).orderBy(
            self.df_base_filter_date.rank.asc_nulls_last()
        )
        self.df_base_filter_date = self.df_base_filter_date.withColumn('row_num',
                                                                       F.row_number().over(window=similar_words_window))
        # CommonUtil.df_export_csv(self.spark, self.df_sec_words, 'export_sec_words_2023_10_26_detail', 100 * 10000)
        self.df_base_filter_date = self.df_base_filter_date.filter("row_num=1").cache()

        df_without_brand_words = self.df_base_filter_date.filter("st_brand_label = 0")
        # 单独处理品牌词内的数据逻辑
        df_brand_words = self.df_base_filter_date.filter("st_brand_label = 1")
        df_brand_words = df_brand_words.withColumn("brand_match_detail",
                                                   self.udf_theme_regex(self.brand_pattern)(
                                                       F.col("search_term")))
        df_brand_words = df_brand_words.filter("brand_match_detail is not null")
        df_brand_words = df_brand_words.drop('brand_match_detail')
        # 将处理后的品牌词与非品牌词合并
        self.df_base_filter_date = df_without_brand_words.unionByName(df_brand_words)
        # 处理二三级词包含词的过滤逻辑和二三级黑名单词的过滤逻辑
        pd_match_blacklist = self.df_match_blacklist.toPandas()
        self.df_base_filter_date = self.df_base_filter_date.withColumn("st_blacklist_flag",
                                                                       self.filter_blacklist_words(pd_match_blacklist)(
                                                                           "search_term"))
        # 取出非黑名单标记的数据
        self.df_base_filter_date = self.df_base_filter_date.filter("st_blacklist_flag != 1")

    # 处理二级词
    def handle_sec_st(self):
        self.df_sec_words = self.df_base_filter_date.filter("st_word_num = 2")
        self.df_sec_words = self.df_sec_words.join(
            self.df_theme, on=['search_term'], how='left'
        )
        self.df_sec_words = self.df_sec_words.withColumn("filter_flag",
                                                         self.u_filter_sec_pattern_words(F.col("search_term"),
                                                                                         F.col("pattern_list")))
        # 过滤掉被标记为1的数据
        self.df_sec_words = self.df_sec_words.filter("filter_flag != 1")
        self.df_sec_words = self.df_sec_words.select("search_term").cache()


        # CommonUtil.df_export_csv(self.spark, self.df_sec_words, 'export_sec_words_2023_11_30', 100 * 10000)

    # 处理三级词
    def handle_third_st(self):
        self.df_third_words = self.df_base_filter_date.filter("st_word_num = 3")
        self.df_third_words = self.df_third_words.join(
            self.df_theme, on=['search_term'], how='left'
        )
        # 过滤匹配到功能词的三级词
        self.df_third_words = self.df_third_words.filter("pattern_list is null")
        self.df_third_words = self.df_third_words.select("search_term").cache()

    def handle_st_filter_table(self):
        df_st_filter_base = self.df_st_base.select(
            F.col('st_key'),
            F.col('search_term'),
            F.col('bsr_orders'),
            F.lit(self.site_name).alias('site_name'),
            F.lit(self.date_type).alias('date_type'),
            F.lit(self.date_info).alias('date_info')
        ).coalesce(1).cache()

        # 将二级词和三级词进行合并
        pattern_words = self.df_sec_words.unionByName(self.df_third_words)
        # 将数据转换成pandas_df
        dict_df = pattern_words.toPandas()
        # 提取二级词和是否叠词标签转换成list[dict{}]
        self.st_word_list = dict_df.to_dict(orient='records')
        # self.st_word_list = dict_df["search_term"].values.tolist()
        row_size = 40000
        batch_size = 200
        # 落表路径校验
        del_hdfs_path = CommonUtil.build_hdfs_path('tmp_pattern_st_info', partition_dict=self.partition_dict)
        print(f"清除hdfs目录中:{del_hdfs_path}")
        HdfsUtils.delete_file_in_folder(del_hdfs_path)
        partition_by = ["site_name", "date_type", "date_info"]
        word_batches = [self.st_word_list[i:i + row_size] for i in range(0, len(self.st_word_list), row_size)]
        for word_batch in word_batches:
        # for word_batch in word_batches[:1]:
            df_list = [] # 用于存储 DataFrame
            for row in word_batch:
                # print(f"self.st_word_list.index(word):{self.st_word_list.index(word)}, word:{word}")
                # 获取处理后的多级词
                pattern_st = row["search_term"]
                # 通过方法拆分,获取完全匹配的过滤条件
                filter_condition = self.st_word_filter_condition(pattern_st)
                filter_condition_expr = F.expr(filter_condition)
                df_union_filter = df_st_filter_base.filter(filter_condition_expr)
                df_union_filter = df_union_filter.withColumn("pattern_st", F.lit(pattern_st))
                df_list.append(df_union_filter)
            for i in range(0, len(df_list), batch_size):
                print(f"当前是word_batches的轮回:f{word_batches.index(word_batch)},当前写入表的df索引位置:{i + 1}")
                tmp_df = []
                tmp_df = df_list[i:i + batch_size]
                result_df = self.udf_unionAll(*tmp_df)
                result_df = result_df.repartition(1)
                result_df.write.saveAsTable(name='tmp_pattern_st_info', format='hive', mode='append', partitionBy=partition_by)
                # print(f"test_df:{len(test_df)}")
        sql = f"""
                    select 
                       st_key, 
                       search_term, 
                       bsr_orders, 
                       pattern_st
                    from big_data_selection.tmp_pattern_st_info
                    where site_name = '{self.site_name}'
                      and date_type = '{self.date_type}'
                      and date_info = '{self.date_info}'
                """
        self.df_pattern_st_words = self.spark.sql(sql).cache()
        self.df_pattern_st_words.show(20, truncate=False)
        # print(f"combined_df:{combined_df.count()}")
        self.df_pattern_st_words = self.df_pattern_st_words.cache()
        # self.df_pattern_st_words.show(20, truncate=False)
        # print("匹配后的表数据有:", self.df_pattern_st_words.count())
        # 计算二级词下的总销量和匹配到的aba词个数
        self.df_pattern_st_agg = self.df_pattern_st_words.groupBy(['pattern_st']).agg(
            F.sum("bsr_orders").alias("pattern_bsr_orders_total"),
            F.count("search_term").alias("pattern_st_count")
        ).cache()

    def handle_st_pattern_common_agg(self):
        # # 临时使用添加
        # sql = f"""
        #                    select
        #                       st_key,
        #                       search_term,
        #                       bsr_orders,
        #                       pattern_st
        #                    from big_data_selection.tmp_pattern_st_info
        #                    where site_name = '{self.site_name}'
        #                      and date_type = '{self.date_type}'
        #                      and date_info = '{self.date_info}'
        #                """
        # self.df_pattern_st_words = self.spark.sql(sql).cache()
        # self.df_pattern_st_words.show(20, truncate=False)
        # # print(f"combined_df:{combined_df.count()}")
        # self.df_pattern_st_words = self.df_pattern_st_words.cache()
        # self.df_pattern_st_words.show(20, truncate=False)
        # print("匹配后的表数据有:", self.df_pattern_st_words.count())
        # 计算二级词下的总销量和匹配到的aba词个数
        self.df_pattern_st_agg = self.df_pattern_st_words.groupBy(['pattern_st']).agg(
            F.sum("bsr_orders").alias("pattern_bsr_orders_total"),
            F.count("search_term").alias("pattern_st_count")
        ).cache()
        # 将二级词匹配明细和主题功能词标签明细进行匹配;pattern_type=0的情况
        df_common_st_theme = self.df_st_theme_base.filter("pattern_type = 0")
        self.df_st_theme_agg = self.df_pattern_st_words.join(
            df_common_st_theme, on=['st_key', 'search_term'], how='left'
        )

        # 那些搜索词匹配不到功能词需过滤掉
        self.df_st_theme_agg = self.df_st_theme_agg.filter("theme_en is not null")
        # 进行分组累加(按照匹配词中文进行累加,业务要求中文含义为准计数)
        self.df_st_theme_agg = self.df_st_theme_agg.groupBy(['pattern_st', 'theme_label_ch', 'theme_en', 'theme_ch']).agg(
            F.count("st_key").alias("theme_label_counts"),
            F.sum("bsr_orders").alias("theme_label_bsr_orders"),
            F.collect_set("theme_label_en").alias("theme_label_en_list")
        )
        # 转换成字符串拼接
        self.df_st_theme_agg = self.df_st_theme_agg.withColumn('label_en_str',
                                                               F.concat_ws("/", F.col('theme_label_en_list')))

        # 给pattern_st拼接pattern_st总的bsr_orders和st_count
        self.df_st_theme_agg = self.df_st_theme_agg.join(
            self.df_pattern_st_agg, on=['pattern_st'], how='left'
        )

        # 计算占比
        self.df_st_theme_agg = self.df_st_theme_agg.withColumn('pattern_bsr_orders_rate',
                                                               F.when(F.col('pattern_bsr_orders_total') > 0,
                                                                      F.round(F.col('theme_label_bsr_orders') / F.col(
                                                                          'pattern_bsr_orders_total'), 4))
                                                               .otherwise(F.lit(0.0)))
        self.df_st_theme_agg = self.df_st_theme_agg.withColumn('pattern_num_rate',
                                                               F.when(F.col('pattern_st_count') > 0,
                                                                      F.round(F.col('theme_label_counts') / F.col(
                                                                          'pattern_st_count'), 4))
                                                               .otherwise(F.lit(0.0)))

        self.df_st_theme_agg.show(10, truncate=False)

        self.df_st_theme_agg = self.df_st_theme_agg.select(
            F.col('pattern_st'),
            F.col('pattern_bsr_orders_total'),
            F.col('pattern_st_count'),
            F.col('theme_ch'),
            F.col('theme_en'),
            F.col('theme_label_ch'),
            F.col('label_en_str').alias('theme_label_en'),
            F.col('theme_label_bsr_orders'),
            F.col('theme_label_counts'),
            F.col('pattern_bsr_orders_rate'),
            F.col('pattern_num_rate')
        )
        pass

    def handle_st_pattern_special_agg(self):
        # 将二级词匹配明细和主题功能词标签明细进行匹配;pattern_type=1的情况
        df_special_st_theme = self.df_st_theme_base.filter("pattern_type = 1")
        self.df_st_match_topic_detail = self.df_pattern_st_words.join(
            df_special_st_theme, on=['st_key', 'search_term'], how='left'
        )
        self.df_st_match_topic_detail = self.df_st_match_topic_detail.filter("theme_label_en is not null")
        df_st_match_agg = self.df_st_match_topic_detail.groupby(
            ['pattern_st', 'theme_ch', 'theme_en', 'theme_label_ch', 'theme_label_num_info', 'theme_label_unit_info']).agg(
            F.count('bsr_orders').alias("same_info_count"),
            F.sum('bsr_orders').alias("same_info_bsr_orders")
        )
        df_st_match_no_num_agg = df_st_match_agg.filter("theme_label_num_info is null")
        df_st_match_no_num_info = df_st_match_no_num_agg.groupby(
            ['pattern_st', 'theme_ch', 'theme_en', 'theme_label_ch', 'theme_label_unit_info']).agg(
            F.sum('same_info_count').alias("st_label_num"),
            F.sum('same_info_bsr_orders').alias("st_label_bsr_orders"),
            F.col('theme_label_unit_info').alias("label_info")
        )
        df_st_match_no_num_info = df_st_match_no_num_info.drop("theme_label_unit_info")
        df_st_match_no_unit_agg = df_st_match_agg.filter("theme_label_unit_info in ('x', 'by')")
        df_st_match_no_unit_info = df_st_match_no_unit_agg.groupby(
            ['pattern_st', 'theme_ch', 'theme_en', 'theme_label_ch', 'theme_label_num_info']).agg(
            F.sum('same_info_count').alias("st_label_num"),
            F.sum('same_info_bsr_orders').alias("st_label_bsr_orders"),
            F.col("theme_label_num_info").alias("label_info")
        )
        df_st_match_no_unit_info = df_st_match_no_unit_info.drop("theme_label_num_info")
        df_st_match_complete_agg = df_st_match_agg.filter(
            (F.col("theme_label_num_info").isNotNull()) & (F.col("theme_label_unit_info").isNotNull()) & (F.col("theme_label_unit_info") != 'x') & (
                    F.col("theme_label_unit_info") != 'by'))
        df_st_match_complete_agg = df_st_match_complete_agg.withColumn("complete_info",
                                                                       F.concat_ws(' ', F.col("theme_label_num_info"),
                                                                                   F.col("theme_label_unit_info")))
        df_st_match_complete_info = df_st_match_complete_agg.groupby(
            ['pattern_st', 'theme_ch', 'theme_en', 'theme_label_ch', 'theme_label_num_info']).agg(
            F.sum('same_info_count').alias("st_label_num"),
            F.sum('same_info_bsr_orders').alias("st_label_bsr_orders"),
            F.concat_ws("/", F.collect_set(F.col("complete_info"))).alias("label_info")
        )
        df_st_match_complete_info = df_st_match_complete_info.drop("theme_label_num_info")
        self.df_st_match_topic_agg = df_st_match_no_num_info.unionByName(df_st_match_no_unit_info).unionByName(
            df_st_match_complete_info)
        self.df_st_match_topic_agg = self.df_st_match_topic_agg.join(
            self.df_pattern_st_agg, on=['pattern_st'], how='left'
        )
        self.df_st_match_topic_agg = self.df_st_match_topic_agg.withColumn("pattern_bsr_orders_rate",
                                                                           F.when(F.col("pattern_bsr_orders_total") > 0,
                                                                                  F.round((F.col(
                                                                                      "st_label_bsr_orders") / F.col(
                                                                                      "pattern_bsr_orders_total")),
                                                                                          4)).otherwise(F.lit(0.0)))
        self.df_st_match_topic_agg = self.df_st_match_topic_agg.withColumn("pattern_num_rate",
                                                                           F.when(F.col("pattern_st_count") > 0,
                                                                                  F.round(
                                                                                      (F.col("st_label_num") / F.col(
                                                                                          "pattern_st_count")),
                                                                                      4)).otherwise(F.lit(0.0)))
        self.df_st_match_topic_agg = self.df_st_match_topic_agg.select(
            F.col('pattern_st'),
            F.col('pattern_bsr_orders_total'),
            F.col('pattern_st_count'),
            F.col('theme_ch'),
            F.col('theme_en'),
            F.col('theme_label_ch'),
            F.col('label_info').alias('theme_label_en'),
            F.col('st_label_bsr_orders').alias('theme_label_bsr_orders'),
            F.col('st_label_num').alias('theme_label_counts'),
            F.col('pattern_bsr_orders_rate'),
            F.col('pattern_num_rate')
        )

    def save_data(self):
        hdfs_path_asin_info = CommonUtil.build_hdfs_path(self.hive_tb, partition_dict=self.partition_dict)
        print(f"清除hdfs目录中:{hdfs_path_asin_info}")
        HdfsUtils.delete_file_in_folder(hdfs_path_asin_info)
        self.df_st_theme_agg = self.df_st_theme_agg.unionByName(self.df_st_match_topic_agg)
        # 添加逻辑;如果二级词/三级词自身也有匹配词,则相应的统计需要过滤掉
        df_agg_filter = self.df_st_theme_base.select(
            F.col('search_term'),
            F.col('theme_label_en').alias('theme_label_en_join'),
            F.lit(1).alias('join_flag')
        )
        self.df_st_theme_agg = self.df_st_theme_agg.join(
            df_agg_filter, on=(self.df_st_theme_agg.pattern_st == df_agg_filter.search_term) & (self.df_st_theme_agg.theme_label_en == df_agg_filter.theme_label_en_join), how='left'
        )
        # join_flag 如果为1则说明结果集匹配到了二级词/三级词自身的相关标签,因此需要过滤
        self.df_st_theme_agg = self.df_st_theme_agg.filter(F.col('join_flag').isNull())


        self.df_st_theme_agg = self.df_st_theme_agg.select(
            F.col('pattern_st'),
            F.col('pattern_bsr_orders_total'),
            F.col('pattern_st_count'),
            F.col('theme_ch'),
            F.col('theme_en'),
            F.col('theme_label_ch'),
            F.col('theme_label_en'),
            F.col('theme_label_bsr_orders'),
            F.col('theme_label_counts'),
            F.col('pattern_bsr_orders_rate'),
            F.col('pattern_num_rate'),
            F.date_format(F.current_timestamp(), 'yyyy-MM-dd HH:mm:SS').alias('created_time'),
            F.date_format(F.current_timestamp(), 'yyyy-MM-dd HH:mm:SS').alias('updated_time'),
            F.lit(self.site_name).alias('site_name'),
            F.lit(self.date_type).alias('date_type'),
            F.lit(self.date_info).alias('date_info')
        )

        self.df_st_theme_agg = self.df_st_theme_agg.repartition(20)
        partition_by = ["site_name", "date_type", "date_info"]
        print(f"当前存储的表名为:{self.hive_tb},分区为{partition_by}", )
        self.df_st_theme_agg.write.saveAsTable(name=self.hive_tb, format='hive', mode='append',
                                               partitionBy=partition_by)
        print("success")


if __name__ == '__main__':
    site_name = CommonUtil.get_sys_arg(1, None)
    date_type = CommonUtil.get_sys_arg(2, None)
    date_info = CommonUtil.get_sys_arg(3, None)  # 参数3:年-周/年-月/年-季/年-月-日, 比如: 2022-1
    assert site_name is not None, "site_name 不能为空!"
    assert date_type is not None, "date_type 不能为空!"
    assert date_info is not None, "date_info 不能为空!"
    obj = DwtStThemeAgg(site_name=site_name, date_type=date_type, date_info=date_info)
    obj.handle_data()