dwt_aba_last_change_rate.py 14.2 KB
Newer Older
chenyuanjie committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
"""
   @Author      : HuangJian
   @Description : 关键词与Asin详情维表
   @SourceTable :
                  ①dwd_st_asin_measure
                  ②dwt_aba_st_analytics

   @SinkTable   : dwt_aba_last_change_rate
   @CreateTime  : 2022/03/13 14:55
   @UpdateTime  : 2022/03/13 14:55
"""
import os
import sys
sys.path.append(os.path.dirname(sys.path[0]))

from utils.hdfs_utils import HdfsUtils
from utils.common_util import CommonUtil, DateTypes
from utils.spark_util import SparkUtil
from pyspark.sql import functions as F


class DwtAbaLastChangeRate(object):

    def __init__(self, site_name, date_type, date_info):
        self.site_name = site_name
        self.date_type = date_type
        self.date_info = date_info
        self.hive_tb = "dwt_aba_last_change_rate"
        app_name = f"{ self.hive_tb}:{site_name}:{date_type}:{date_info}"
        self.spark = SparkUtil.get_spark_session(app_name)
        self.partitions_num = CommonUtil.reset_partitions(site_name, 1)
        hdfs_path = f"/home/{SparkUtil.DEF_USE_DB}/dwt/{self.hive_tb}/site_name={self.site_name}/date_type={self.date_type}/date_info={self.date_info}"
        print(f"清除hdfs目录中数据:{hdfs_path}")
        HdfsUtils.delete_hdfs_file(hdfs_path)

        self.last_year_index = int
        # 计算环比日期
        self.last_date_info = self.handle_date_offset(0)
        # 计算同比日期
        self.last_year_date_info = self.handle_date_offset(1)

        # 初始化全局df
        self.df_aba_analytics = self.spark.sql(f"select 1+1;")
        self.df_aba_analytics_old = self.spark.sql(f"select 1+1;")
        self.df_st_base_data = self.spark.sql(f"select 1+1;")
        self.df_st_last_data = self.spark.sql(f"select 1+1;")
        self.df_st_last_year_data = self.spark.sql(f"select 1+1;")
        self.df_save = self.spark.sql(f"select 1+1;")

    def handle_date_offset(self, handle_type: int):
        # handle_type = 0 代表计算环比日期,等于 1 代表计算同比日期
        handle_date = self.date_info
        if handle_type == 0:
            # 计算环比计算日期--通过检索表的各分区,取当前计算日上一周期
            if self.date_type == DateTypes.last365day.name:
                # 当date_type为['last365day']时,检索分区dwt_aba_last365
                date_df = CommonUtil.select_partitions_df(self.spark, "dwt_aba_last365")
                handle_date = date_df.filter(
                    f"site_name = '{self.site_name}' date_type = '{self.date_type}' and and date_info < '{self.date_info}' "
                ).selectExpr("max(date_info)").rdd.flatMap(lambda ele: ele).collect()[0]
            else:
                # 当date_type为['day','week','month','last30day']时,检索分区dwt_aba_st_analytics
                date_df = CommonUtil.select_partitions_df(self.spark, "dwt_aba_st_analytics")
                handle_date = date_df.filter(
                    f"site_name = '{self.site_name}' and date_type = '{self.date_type}' and date_info < '{self.date_info}' "
                ).selectExpr("max(date_info)").rdd.flatMap(lambda ele: ele).collect()[0]
        else:
            # 计算同比计算日期 (无论哪个日期类型,开头参数分割第一个参数均为年)
            year_int = int(CommonUtil.safeIndex(handle_date.split("-"), 0, None))
            last_year_int = year_int - 1
            self.last_year_index = last_year_int
            # 将当前年份,替换成同比年份
            handle_date = handle_date.replace(str(year_int), str(last_year_int))
        print("计算处理之后的日期:", handle_date)
        return handle_date

    def run(self):
        # aba :365的取值表逻辑与其他时间区间(day,week,month,last30day)的取值逻辑不一致
        if self.date_type == DateTypes.last365day.name:
            self.handle_365_data()
        else:
            self.read_data()
            self.handle_base()
            self.handle_year_ratio()
        self.save_data()

    def read_data(self):
        sql1 = f"""
            select 
                id,
                search_term,
                rank,
                bsr_orders,
                asin_cn_count,
                asin_fbm_count,
                asin_amazon_count,
                search_volume
            from dwt_aba_st_analytics
            where site_name = '{self.site_name}'
            and date_type = '{self.date_type}'
            and date_info = '{self.date_info}'
        """
        self.df_aba_analytics = self.spark.sql(sql1).repartition(40, 'id').cache()
        self.df_aba_analytics.show(10, truncate=True)

        sql2 = f"""
            select 
                id,
                rank              as last_rank,
                bsr_orders        as last_bsr_orders,
                asin_cn_count     as last_asin_cn_count,
                asin_fbm_count    as last_asin_fbm_count,
                asin_amazon_count as last_asin_amazon_count
            from dwt_aba_st_analytics
            where site_name = '{self.site_name}'
            and date_type = '{self.date_type}'
            and date_info = '{self.last_date_info}'
        """
        self.df_aba_analytics_old = self.spark.sql(sql2).repartition(40, 'id').cache()
        self.df_aba_analytics_old.show(10, truncate=True)

        # 获取同比周期数据--(2022年的同比数据只能通过dim_st_detail取到搜索词排名)
        if self.last_year_date_info <= '2022-09':
            sql = f"""
                select 
                    search_term,
                    st_rank as last_year_rank,
                    null as last_year_bsr_orders,
                    null as last_year_asin_cn_count,
                    null as last_year_asin_fbm_count,
                    null as last_year_asin_amazon_count,
                    st_search_num as last_year_search_volume
                from dim_st_detail
                where site_name = '{self.site_name}'
                and date_type = '{self.date_type}'
                and date_info = '{self.last_year_date_info}'
            """
        else:
            sql = f""" 
                select
                    search_term,
                    rank as last_year_rank, 
                    bsr_orders as last_year_bsr_orders,
                    asin_cn_count as last_year_asin_cn_count,
                    asin_fbm_count as last_year_asin_fbm_count,
                    asin_amazon_count as last_year_asin_amazon_count,
                    search_volume as last_year_search_volume
                from dwt_aba_st_analytics
                where site_name = '{self.site_name}'
                and date_type = '{self.date_type}'
                and date_info = '{self.last_year_date_info}'
            """
        self.df_st_last_year_data = self.spark.sql(sql).repartition(40, 'search_term').cache()
        self.df_st_last_year_data.show(10, truncate=True)

    def handle_base(self):
        self.df_st_base_data = self.df_aba_analytics.join(
            self.df_aba_analytics_old, on='id', how='left'
        )
        self.df_st_base_data = self.df_st_base_data.withColumn(
            'rank_rate_of_change',
            F.round((F.col('rank') - F.col('last_rank')) / F.col('last_rank'), 3)
        ).withColumn(
            'bsr_orders_rate_of_change',
            F.round((F.col('bsr_orders') - F.col('last_bsr_orders')) / F.col('last_bsr_orders'), 3)
        ).withColumn(
            'cn_seller_rate_of_change',
            F.round((F.col('asin_cn_count') - F.col('last_asin_cn_count')) / F.col('last_asin_cn_count'), 3)
        ).withColumn(
            'fbm_rate_of_change',
            F.round((F.col('asin_fbm_count') - F.col('last_asin_fbm_count')) / F.col('last_asin_fbm_count'), 3)
        ).withColumn(
            'amazon_rate_of_change',
            F.round((F.col('asin_amazon_count') - F.col('last_asin_amazon_count')) / F.col('last_asin_amazon_count'), 3)
        ).select(
            'id', 'search_term', 'rank', 'bsr_orders', 'asin_cn_count', 'asin_fbm_count', 'asin_amazon_count',
            'rank_rate_of_change', 'bsr_orders_rate_of_change', 'cn_seller_rate_of_change',
            'fbm_rate_of_change', 'amazon_rate_of_change', 'search_volume'
        ).repartition(40, 'search_term').cache()
        self.df_aba_analytics.unpersist()
        self.df_aba_analytics_old.unpersist()

    def handle_year_ratio(self):
        # 计算同比逻辑
        df_year_ratio = self.df_st_base_data.join(
            self.df_st_last_year_data, on='search_term', how='left'
        )
        df_year_ratio = df_year_ratio.withColumn(
            "rank_change_rate",
            F.round(F.expr("(rank - last_year_rank) / last_year_rank"), 3)
        ).withColumn(
            "bsr_orders_change_rate",
            F.round(F.expr("(bsr_orders - last_year_bsr_orders) / last_year_bsr_orders"), 3)
        ).withColumn(
            "cn_seller_change_rate",
            F.round(F.expr("(asin_cn_count - last_year_asin_cn_count) / last_year_asin_cn_count"), 3)
        ).withColumn(
            "fbm_change_rate",
            F.round(F.expr("(asin_fbm_count - last_year_asin_fbm_count) / last_year_asin_fbm_count"), 3)
        ).withColumn(
            "amazon_change_rate",
            F.round(F.expr("(asin_amazon_count - last_year_asin_amazon_count) / last_year_asin_amazon_count"), 3)
        ).withColumn(
            "search_volume_change_rate",
            F.round(F.expr("(search_volume - last_year_search_volume) / last_year_search_volume"), 3)
        ).na.fill({
            # 默认值1000,本次有数据 同比(环比)没有数据 归为上升,排名负数代表上升
            "rank_change_rate": -1000.000,
            "rank_rate_of_change": -1000.000,
            "bsr_orders_change_rate": 1000.000,
            "bsr_orders_rate_of_change": 1000.000,
            "cn_seller_change_rate": 1000.000,
            "cn_seller_rate_of_change": 1000.000,
            "fbm_change_rate": 1000.000,
            "fbm_rate_of_change": 1000.000,
            "amazon_change_rate": 1000.000,
            "amazon_rate_of_change": 1000.000,
            "search_volume_change_rate": 1000.000
        })
        self.df_save = df_year_ratio

    def handle_365_data(self):
        sql = f"""
            with base_data as (
                select 
                    id,
                    search_term,
                    rank,
                    bsr_orders
                from dwt_aba_last365
                where site_name = '{self.site_name}'
                and date_type = '{self.date_type}'
                and date_info = '{self.date_info}'
            ),
            chain_ratio_data as (
                select 
                    id,
                    rank              as last_rank,
                    bsr_orders        as last_bsr_orders
                from dwt_aba_last365
                where site_name = '{self.site_name}'
                and date_type = '{self.date_type}'
                and date_info = '{self.last_date_info}'
            ),
            year_ratio_data as (
                select 
                    id,
                    rank              as last_year_rank,
                    bsr_orders        as last_year_bsr_orders
                from dwt_aba_last365
                where site_name = '{self.site_name}'
                and date_type = '{self.date_type}'
                and date_info = '{self.last_year_date_info}'
            )

            select 
                base.id,
                base.search_term,
                base.rank,
                base.bsr_orders,
                round((base.rank - chain.last_rank)/chain.last_rank,3) as rank_rate_of_change,
                round((base.bsr_orders - chain.last_bsr_orders)/chain.last_bsr_orders,3) as bsr_orders_rate_of_change,
                round((base.rank - year.last_year_rank)/year.last_year_rank,3) as rank_change_rate,
                round((base.bsr_orders - year.last_year_bsr_orders)/year.last_year_bsr_orders,3) as bsr_orders_change_rate
            from base_data base left join chain_ratio_data chain
            on base.id = chain.id
            left join year_ratio_data year
            on base.id = year.id
        """
        print("动态365的同比、环比计算sql语句:", sql)
        self.df_save = self.spark.sql(sqlQuery=sql)
        # 字段补全
        self.df_save = self.df_save.withColumn(
            "cn_seller_rate_of_change", F.lit(None)
        ).withColumn(
            "cn_seller_change_rate", F.lit(None)
        ).withColumn(
            "fbm_rate_of_change", F.lit(None)
        ).withColumn(
            "fbm_change_rate", F.lit(None)
        ).withColumn(
            "amazon_rate_of_change", F.lit(None)
        ).withColumn(
            "amazon_change_rate", F.lit(None)
        )

    def save_data(self):
        self.df_save = self.df_save.select(
            F.col("id").alias("search_term_id"),
            F.col("search_term"),
            F.col("rank_rate_of_change"),
            F.col("rank_change_rate"),
            F.col("bsr_orders_rate_of_change"),
            F.col("bsr_orders_change_rate"),
            F.col("cn_seller_rate_of_change"),
            F.col("cn_seller_change_rate"),
            F.col("fbm_rate_of_change"),
            F.col("fbm_change_rate"),
            F.col("amazon_rate_of_change"),
            F.col("amazon_change_rate"),
            F.date_format(F.current_timestamp(), 'yyyy-MM-dd HH:mm:SS').alias("created_time"),
            F.date_format(F.current_timestamp(), 'yyyy-MM-dd HH:mm:SS').alias("updated_time"),
            F.col("search_volume_change_rate"),
            F.lit(self.site_name).alias("site_name"),
            F.lit(self.date_type).alias("date_type"),
            F.lit(self.date_info).alias("date_info")
        )

        # 类型转换
        self.df_save = CommonUtil.auto_transfer_type(self.spark, self.df_save, self.hive_tb)

        self.df_save = self.df_save.repartition(self.partitions_num)
        partition_by = ["site_name", "date_type", "date_info"]
        print(f"当前存储的表名为:{self.hive_tb},分区为{partition_by}", )
        self.df_save.write.saveAsTable(name=self.hive_tb, format='hive', mode='append', partitionBy=partition_by)
        print("success")


if __name__ == '__main__':
    site_name = CommonUtil.get_sys_arg(1, None)
    date_type = CommonUtil.get_sys_arg(2, None)
    date_info = CommonUtil.get_sys_arg(3, None)
    obj = DwtAbaLastChangeRate(site_name, date_type, date_info)
    obj.run()