dwt_st_base_report.py 6.7 KB
Newer Older
chenyuanjie committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
import os
import sys

sys.path.append(os.path.dirname(sys.path[0]))

from utils.hdfs_utils import HdfsUtils
from utils.common_util import CommonUtil
from utils.spark_util import SparkUtil
from pyspark.sql import functions as F
from pyspark.sql.window import Window


class DwtSTBaseReport(object):

    def __init__(self, site_name, date_type, date_info):
        self.site_name = site_name
        self.date_type = date_type
        self.date_info = date_info
        self.hive_tb = "dwt_st_base_report"
        app_name = f"{self.hive_tb}:{site_name} {date_type} {date_info}"
        self.spark = SparkUtil.get_spark_session(app_name)
        self.partitions_num = CommonUtil.reset_partitions(site_name, 1)

    def run(self):
        # 读ods_rank_search_rate_repeat表,获取排名+搜索量对应关系
        if self.date_info <= '2022-08':
            params = "date_info = '2022-08'"
        else:
            params = f"date_info = '{self.date_info}'"
        sql1 = f"""
        select 
            rank as st_rank, 
            search_num as st_volume, 
            search_sum as st_orders 
        from ods_rank_search_rate_repeat 
        where site_name = '{self.site_name}' 
          and date_type = 'month' 
          and {params};
        """
        df_rank_sv = self.spark.sql(sql1).repartition(40, 'st_rank').cache()
        print("排名+搜索量对应关系:")
        df_rank_sv.show(10, False)
        if df_rank_sv.count() == 0:
            sql1 = f"""
            select 
                rank as st_rank, 
                search_num as st_volume, 
                search_sum as st_orders, 
                date_info 
            from ods_rank_search_rate_repeat 
            where site_name = '{self.site_name}';
            """
            df_rank_sv = self.spark.sql(sql1)
            window = Window.partitionBy(["st_rank"]).orderBy(df_rank_sv.date_info.desc())
            df_rank_sv = df_rank_sv.withColumn("rk", F.row_number().over(window=window))\
                .filter("rk = 1")\
                .drop("rk", "date_info")\
                .repartition(40, 'st_rank').cache()
            print("排名+搜索量对应关系:")
            df_rank_sv.show(10, False)

        # 搜索词主表
        sql2 = f""" 
        select 
            id as st_key, 
            search_term 
        from dwt_aba_st_analytics
        where site_name = '{self.site_name}'
          and date_type = '{self.date_type}'
          and date_info = '{self.date_info}';
        """
        df_st_base = self.spark.sql(sql2).repartition(40, 'search_term').cache()
        print("搜索词主表:")
        df_st_base.show(10, False)

        # 读ods_brand_analytics表,获取报告中的搜索词+排名
        sql3 = f"""
        select 
            search_term, 
            rank as st_rank 
        from ods_brand_analytics 
        where site_name = '{self.site_name}' 
          and date_type = '{self.date_type}' 
          and date_info = '{self.date_info}';
        """
        df_st_rank = self.spark.sql(sql3).repartition(40, 'search_term').cache()
        print("搜索词+排名对应关系,月:")
        df_st_rank.show(10, False)

        df_save = df_st_base \
            .join(df_st_rank, 'search_term', 'inner') \
            .repartition(40, 'st_rank') \
            .join(df_rank_sv, 'st_rank', 'left') \
            .withColumn('created_time', F.date_format(F.current_timestamp(), 'yyyy-MM-dd HH:mm:SS')) \
            .withColumn('updated_time', F.date_format(F.current_timestamp(), 'yyyy-MM-dd HH:mm:SS')) \
            .withColumn('years', F.lit(int(self.date_info.split("-")[0]))) \
            .withColumn('site_name', F.lit(self.site_name)) \
            .withColumn('date_type', F.lit(self.date_type)) \
            .withColumn('date_info', F.lit(self.date_info))
        hdfs_path = f"/home/{SparkUtil.DEF_USE_DB}/dwt/{self.hive_tb}/site_name={self.site_name}/date_type={self.date_type}/date_info={self.date_info}"
        print(f"清除hdfs目录中数据:{hdfs_path}")
        HdfsUtils.delete_hdfs_file(hdfs_path)
        df_save = df_save.repartition(self.partitions_num)
        partition_by = ["site_name", "date_type", "date_info"]
        print(f"当前存储的表名为:{self.hive_tb},分区为{partition_by}", )
        df_save.write.saveAsTable(name=self.hive_tb, format='hive', mode='append', partitionBy=partition_by)
        print("success")

        # 计算周维度的趋势图数据
        # 读日期字典表,获取date_info对应的week_list
        sql = f""" 
        select year_week from dim_date_20_to_30 where week_day = 1 and year_month = '{self.date_info}';
        """
        df_week = self.spark.sql(sql)
        week_list = sorted([row['year_week'] for row in df_week.collect()])
        for year_week in week_list:
            sql = f"""
            select 
                search_term, 
                rank as st_rank 
            from ods_brand_analytics 
            where site_name = '{self.site_name}' 
              and date_type = 'week' 
              and date_info = '{year_week}'
              and rank <= 1500000;
            """
            df_st_rank_week = self.spark.sql(sql).repartition(40, 'search_term').cache()
            print(f"搜索词+排名对应关系,{year_week}周:")
            df_st_rank_week.show(10, False)
            df_save = df_st_base\
                .join(df_st_rank_week, 'search_term', 'inner')\
                .repartition(40, 'st_rank')\
                .join(df_rank_sv, 'st_rank', 'left')\
                .withColumn('created_time', F.date_format(F.current_timestamp(), 'yyyy-MM-dd HH:mm:SS'))\
                .withColumn('updated_time', F.date_format(F.current_timestamp(), 'yyyy-MM-dd HH:mm:SS'))\
                .withColumn('years', F.lit(int(year_week.split("-")[0])))\
                .withColumn('site_name', F.lit(self.site_name))\
                .withColumn('date_type', F.lit('week'))\
                .withColumn('date_info', F.lit(year_week))
            hdfs_path = f"/home/{SparkUtil.DEF_USE_DB}/dwt/{self.hive_tb}/site_name={self.site_name}/date_type=week/date_info={year_week}"
            print(f"清除hdfs目录中数据:{hdfs_path}")
            HdfsUtils.delete_hdfs_file(hdfs_path)
            df_save = df_save.repartition(self.partitions_num)
            partition_by = ["site_name", "date_type", "date_info"]
            print(f"当前存储的表名为:{self.hive_tb},分区为{partition_by}", )
            df_save.write.saveAsTable(name=self.hive_tb, format='hive', mode='append', partitionBy=partition_by)
            print("success")


if __name__ == '__main__':
    site_name = CommonUtil.get_sys_arg(1, None)
    date_type = CommonUtil.get_sys_arg(2, None)
    date_info = CommonUtil.get_sys_arg(3, None)
    obj = DwtSTBaseReport(site_name, date_type, date_info)
    obj.run()