1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
import json
import os
import re
import sys
import time
import traceback
import zlib
import pandas as pd
import redis
from datetime import datetime
sys.path.append("/opt/module/spark-3.2.0-bin-hadoop3.2/demo/py_demo/")
sys.path.append(os.path.dirname(sys.path[0])) # 上级目录
from utils.templates import Templates
# from ..utils.templates import Templates
from utils.templates_mysql import TemplatesMysql
# from ..utils.templates_mysql import TemplatesMysql
from pyspark.sql.types import IntegerType
from pyspark.sql import functions as F
from pyspark.sql.types import *
from yswg_utils.common_udf import udf_rank_and_category
# from ..yswg_utils.common_udf import udf_rank_and_category
from yswg_utils.common_df import get_node_first_id_df
from kafka import KafkaConsumer, TopicPartition
from yswg_utils.common_udf import parse_weight_str
# from ..yswg_utils.common_udf import parse_weight_str
from utils.db_util import DbTypes, DBUtil
from yswg_utils.common_udf import udf_parse_seller_json
from yswg_utils.common_udf import udf_extract_weight_format
from yswg_utils.common_udf import udf_extract_volume_format
from utils.common_util import CommonUtil
class DimStAsinInfo(Templates):
def __init__(self, site_name='us', date_type="day", date_info='2022-10-01', consumer_type='lastest', topic_name="us_asin_detail", batch_size=100000):
super().__init__()
self.site_name = site_name
self.date_type = date_type
self.date_info = date_info
self.consumer_type = consumer_type # 消费实时还是消费历史
self.topic_name = topic_name # 主题名字
self.batch_size = batch_size
self.batch_size_history = int(batch_size / 10)
# 连接到Redis服务器
self.redis_db = {
"us": 0,
"uk": 1,
"de": 2,
"es": 3,
"fr": 4,
"it": 5,
}
self.client = redis.Redis(host='192.168.10.224', port=6379, db=self.redis_db[self.site_name], password='yswg2023')
self.db_save = f'kafka_asin_detail'
self.app_name = self.get_app_name()
self.spark = self.create_spark_object(
app_name=f"{self.app_name}")
self.get_date_info_tuple()
self.df_save = self.spark.sql(f"select 1+1;")
# self.df_st_asin = self.spark.sql(f"select 1+1;")
self.df_bs_report = self.spark.sql(f"select 1+1;")
self.df_asin_bs = self.spark.sql(f"select 1+1;")
self.df_self_asin = self.spark.sql(f"select 1+1;")
self.df_asin_sku = self.spark.sql(f"select 1+1;")
self.df_fd_asin_info = self.spark.sql(f"select 1+1;")
self.df_asin_measure = self.spark.sql(f"select 1+1;")
self.df_asin_templates = self.spark.sql("select asin_zr_counts, asin_sp_counts, asin_sb1_counts,asin_sb2_counts,asin_sb3_counts,asin_ac_counts,asin_bs_counts,asin_er_counts,asin_tr_counts from dwd_asin_measure limit 0")
self.df_asin_counts = self.spark.sql("select asin_zr_counts, asin_sp_counts, asin_sb1_counts,asin_sb2_counts,asin_sb3_counts,asin_ac_counts,asin_bs_counts,asin_er_counts,asin_tr_counts from dwd_asin_measure limit 0")
self.schema = self.init_schema()
# self.u_rank_and_category = self.spark.udf.register("u_rank_and_category", udf_rank_and_category, schema)
schema = StructType([
StructField('asin_bs_cate_1_rank', StringType(), True),
StructField('rank_and_category', StringType(), True),
])
self.u_rank_and_category = self.spark.udf.register("u_rank_and_category", self.udf_rank_and_category, schema)
self.u_cal_crc32 = self.spark.udf.register("u_cal_crc32", self.udf_cal_crc32, IntegerType())
self.u_cal_bkdr = self.spark.udf.register("u_cal_bkdr", self.udf_cal_bkdr, IntegerType())
self.u_extract_dimensions = self.spark.udf.register("u_extract_dimensions", udf_extract_volume_format, StringType())
self.u_extract_weight = self.spark.udf.register("u_extract_weight", udf_extract_weight_format, StringType())
seller_schema = StructType([
StructField("buy_box_seller_type", IntegerType(), True),
StructField("account_name", StringType(), True),
StructField("account_id", StringType(), True)
])
self.u_parse_seller_info = self.spark.udf.register('u_parse_seller_info', udf_parse_seller_json, seller_schema)
self.pattern_1_rank_str = {
"us": "(\d+).*?See Top 100 in ",
"uk": "(\d+).*?See Top 100 in ",
"de": "(\d+).*?Siehe Top 100 in ",
"es": "(\d+).*?Ver el Top 100 en ",
"fr": "(\d+).*?Voir les 100 premiers en ",
"it": "(\d+).*?Visualizza i Top 100 nella categoria "
} # 匹配一级分类的排名
self.pattern_str = {
"us": "(\d+ in [\w&' ]+)",
"uk": "(\d+ in [\w&' ]+)",
"de": "Nr. (\d+ in [\w&' ]+)",
"es": "nº(\d+ en [\w&' ]+)",
"fr": "(\d+ en [\w&' ]+)",
"it": "n. (\d+ in [\w&' ]+)",
} # 匹配排名和分类
self.replace_str = {
"us": "See Top 100 in ",
"uk": "See Top 100 in ",
"de": "Siehe Top 100 in ",
"es": "Ver el Top 100 en ",
"fr": "Voir les 100 premiers en ",
"it": "Visualizza i Top 100 nella categoria ",
} # 去掉top100匹配
# 连接mysql
self.engine_mysql = DBUtil.get_db_engine(db_type=DbTypes.mysql.name, site_name=self.site_name)
# self.beginning_offsets = 326_0000 if self.site_name == 'us' else 0
def get_connection(self):
return TemplatesMysql(site_name=self.site_name).mysql_connect()
def fetch_self_asin(self):
while True:
try:
sql = f"""SELECT asin, 1 as isSelfAsin from {self.site_name}_self_asin"""
df_self_asin = pd.read_sql(sql, con=self.engine_mysql)
schema = StructType([
StructField("asin", StringType(), True),
StructField("isSelfAsin", IntegerType(), True),
])
self.df_self_asin = self.spark.createDataFrame(df_self_asin, schema=schema).cache()
self.df_self_asin.show(10, truncate=False)
break
except Exception as e:
print(e, traceback.format_exc())
time.sleep(10)
self.engine_mysql = self.get_connection()
def fetch_asin_sku_count(self):
while True:
try:
sql = f"""SELECT asin,count(id) as auctionsNum,count((case when sku!='' then sku else NULL end)) as skusNumCreat
from selection.product_audit_asin_sku
-- where asin in ('B085WYH539')
GROUP BY asin
"""
df_asin_sku = pd.read_sql(sql, con=self.engine_mysql)
schema = StructType([
StructField("asin", StringType(), True),
StructField("auctionsNum", IntegerType(), True),
StructField("skusNumCreat", IntegerType(), True),
])
self.df_asin_sku = self.spark.createDataFrame(df_asin_sku, schema=schema).cache()
self.df_asin_sku.show(10, truncate=False)
break
except Exception as e:
print(e, traceback.format_exc())
time.sleep(10)
self.engine_mysql = self.get_connection()
@staticmethod
def init_schema():
schema = StructType([
StructField("asin", StringType(), True),
StructField("week", StringType(), True),
StructField("title", StringType(), True),
StructField("img_url", StringType(), True),
StructField("rating", StringType(), True),
StructField("total_comments", StringType(), True),
StructField("price", FloatType(), True),
StructField("rank", StringType(), True),
StructField("category", StringType(), True),
StructField("launch_time", StringType(), True),
StructField("volume", StringType(), True),
StructField("weight", StringType(), True),
StructField("page_inventory", IntegerType(), True),
StructField("buy_box_seller_type", IntegerType(), True),
StructField("asin_vartion_list", ArrayType(ArrayType(StringType()), True), True),
StructField("title_len", IntegerType(), True),
StructField("img_num", IntegerType(), True),
StructField("img_type", StringType(), True),
StructField("activity_type", StringType(), True),
StructField("one_two_val", StringType(), True),
StructField("three_four_val", StringType(), True),
StructField("eight_val", StringType(), True),
StructField("qa_num", IntegerType(), True),
StructField("five_star", IntegerType(), True),
StructField("four_star", IntegerType(), True),
StructField("three_star", IntegerType(), True),
StructField("two_star", IntegerType(), True),
StructField("one_star", IntegerType(), True),
StructField("low_star", IntegerType(), True),
StructField("together_asin", StringType(), True),
StructField("brand", StringType(), True),
StructField("ac_name", StringType(), True),
StructField("material", StringType(), True),
StructField("node_id", StringType(), True),
StructField("data_type", IntegerType(), True),
StructField("sp_num", StringType(), True),
StructField("describe", StringType(), True),
StructField("date_info", StringType(), True),
StructField("weight_str", StringType(), True),
StructField("package_quantity", StringType(), True),
StructField("pattern_name", StringType(), True),
StructField("seller_id", StringType(), True),
StructField("variat_num", IntegerType(), True),
StructField("site_name", StringType(), True),
StructField("best_sellers_rank", StringType(), True),
StructField("best_sellers_herf", StringType(), True),
StructField("account_url", StringType(), True),
StructField("account_name", StringType(), True),
StructField("parentAsin", StringType(), True),
StructField("asinUpdateTime", StringType(), True),
StructField("follow_sellers", StringType(), True),
StructField("buy_sales", StringType(), True),
StructField("seller_json", StringType(), True),
])
return schema
@staticmethod
def udf_cal_crc32(asin, key_size):
# crc32算法 + 取余
# 获取asin字符串的字节表示形式
bytes_str = bytes(asin, 'utf-8')
# 使用zlib计算CRC-32校验和
checksum = zlib.crc32(bytes_str)
# 获取32位的二进制补码
checksum_signed = (checksum & 0xFFFFFFFF) - (1 << 32) if checksum & (1 << 31) else checksum
def java_mod(x, y):
# return x % y if x * y > 0 else x % y - y # 区分正负值
return abs(x) % y # 不区分正负值
# 取余
result = java_mod(checksum_signed, key_size)
return result
@staticmethod
def udf_cal_bkdr(asin):
# BKDR哈希算法
hash = 0
for c in asin:
hash = (hash * 33 + ord(c)) % 65535 # 对哈希值取模65535,以避免溢出
return hash
@staticmethod
def udf_rank_and_category(best_sellers_rank, pattern_1_rank_str, pattern_str, replace_str):
# best_sellers_rank = str(best_sellers_rank).replace(",", "")
best_sellers_rank = str(best_sellers_rank).replace(".", "").replace(",", "")
matches = re.findall(pattern_1_rank_str, best_sellers_rank)
asin_bs_cate_1_rank = matches[0] if matches else None
best_sellers_rank = best_sellers_rank.replace(replace_str, "")
matches = re.findall(pattern_str, best_sellers_rank)
rank_and_category = "&&&&".join([rank_cate.replace(",", "") for rank_cate in matches]) if matches else None
return asin_bs_cate_1_rank, rank_and_category
def read_data(self):
# print("1.1 读取dim_st_asin_info表, 计算ao值")
# sql = f"select * from dim_st_asin_info where site_name='{self.site_name}' and date_type='{self.date_type}' and date_info='{self.date_info}'"
# print("sql:", sql)
# self.df_st_asin = self.spark.sql(sql)
# self.df_st_asin = self.df_st_asin.drop_duplicates(['search_term', 'asin', 'data_type']).cache()
# self.df_st_asin.show(10, truncate=False)
print("1.2 读取ods_one_category_report表")
if int(self.year) == 2022 and int(self.month) < 3:
sql = f"select category_id as asin_bs_cate_1_id, rank as asin_bs_cate_1_rank, orders as asin_bsr_orders from ods_one_category_report " \
f"where site_name='{self.site_name}' and date_type='month' and date_info='2022-12';"
else:
sql = f"select category_id as asin_bs_cate_1_id, rank as asin_bs_cate_1_rank, orders as asin_bsr_orders from ods_one_category_report " \
f"where site_name='{self.site_name}' and date_type='month' and date_info='{self.year}-{self.month}';"
print("sql:", sql)
self.df_bs_report = self.spark.sql(sqlQuery=sql).cache()
self.df_bs_report.show(10, truncate=False)
print("1.3 读取bsr一级分类表")
self.df_asin_bs = get_node_first_id_df(self.site_name, self.spark)
self.df_asin_bs = self.df_asin_bs.withColumnRenamed("category_first_id", "asin_bs_cate_1_id")
self.df_asin_bs.show(10, truncate=False)
print("1.4 读取内部asin表")
# sql = f"select asin, 1 as isSelfAsin from ods_self_asin where site_name='{self.site_name}';"
# print("sql:", sql)
# self.df_self_asin = self.spark.sql(sqlQuery=sql).cache()
# self.df_self_asin.show(10, truncate=False)
self.fetch_self_asin()
# 读取asin和sku计数关系
print("1.5 读取asin和sku计数关系")
self.fetch_asin_sku_count()
# print("1.6 读取dim_fd_asin_info表, 卖家所在地")
# sql = f"select asin, fd_country_name as fdCountryName from dim_fd_asin_info where site_name='{self.site_name}';"
# print("sql:", sql)
# self.df_fd_asin_info = self.spark.sql(sql)
# self.df_fd_asin_info = self.df_fd_asin_info.drop_duplicates(['asin']).cache()
# self.df_fd_asin_info.show(10, truncate=False)
print("1.7 读取dwd_asin_measure表")
self.read_data_dwd_asin_measure()
print("1.8 获取卖家相关信息-卖家所在地")
sql = f"""
select fd_unique as account_id, upper(fd_country_name) as fdCountryName from dim_fd_asin_info where site_name='{self.site_name}' and fd_unique is not null group by fd_unique, fd_country_name
"""
print("sql=", sql)
self.df_fd_asin_info = self.spark.sql(sqlQuery=sql)
self.df_fd_asin_info.show(10, truncate=False)
def read_data_dwd_asin_measure(self):
print("7. 读取dwd_asin_measure拿取ao及各类型数量")
sql = f"""
select asin, asin_zr_counts, asin_adv_counts, asin_st_counts, asin_amazon_orders,
asin_zr_flow_proportion, asin_ao_val
from dwd_asin_measure where site_name='{self.site_name}' and date_type='{self.date_type}' and date_info='{self.date_info}'
"""
print("sql=", sql)
self.df_asin_measure = self.spark.sql(sqlQuery=sql)
self.df_asin_measure = self.df_asin_measure.repartition(20).cache()
self.df_asin_measure.show(10, truncate=False)
def handle_data(self):
# 计算asin的ao值
self.get_topic_name()
# self.df_asin_counts = self.handle_st_asin_counts()
# self.df_asin_counts = self.df_asin_counts.select("asin", "asin_ao").cache()
def handle_asin_bs_category_rank(self, df):
df = df.withColumn(
'bs_str', self.u_rank_and_category(
'best_sellers_rank',
F.lit(self.pattern_1_rank_str[self.site_name]),
F.lit(self.pattern_str[self.site_name]),
F.lit(self.replace_str[self.site_name])
)
)
df = df.withColumn('asin_bs_cate_1_rank', df.bs_str.getField('asin_bs_cate_1_rank')) \
.withColumn('rank_and_category', df.bs_str.getField('rank_and_category')) \
.drop('bs_str', 'best_sellers_rank')
df.show(10, truncate=False)
return df
# def handle_st_asin_counts(self):
# self.df_st_asin = self.df_st_asin.withColumn(
# f"asin_data_type",
# F.concat(F.lit(f"asin_"), self.df_st_asin.data_type, F.lit(f"_counts"))
# )
# df_asin_counts = self.df_st_asin.groupby([f'asin']). \
# pivot(f"asin_data_type").count()
#
# df_asin_counts = self.df_asin_templates.unionByName(df_asin_counts, allowMissingColumns=True) # 防止爬虫数据没有导致程序运行出错
# df_asin_counts = df_asin_counts.fillna(0)
# # df.show(10, truncate=False)
# df_asin_counts = df_asin_counts.withColumn(
# f"asin_sb_counts",
# df_asin_counts[f"asin_sb1_counts"] + df_asin_counts[f"asin_sb2_counts"] + df_asin_counts[f"asin_sb3_counts"]
# )
# df_asin_counts = df_asin_counts.withColumn(
# f"asin_adv_counts",
# df_asin_counts[f"asin_sb_counts"] + df_asin_counts[f"asin_sp_counts"]
# )
# df_asin_counts = df_asin_counts.withColumn(
# f"asin_ao",
# df_asin_counts[f"asin_adv_counts"] / df_asin_counts[f"asin_zr_counts"]
# ) # 不要把null置为0, null值产生原因是zr类型没有搜到对应的搜索词
# df_asin_counts = df_asin_counts.withColumn("asin_ao", F.round(df_asin_counts["asin_ao"], 4))
#
# df_asin_counts.show(10, truncate=False)
# return df_asin_counts
# 处理配送方式
def handle_asin_buy_box_seller_type(self, df):
df = df.withColumn("seller_json_parsed", self.u_parse_seller_info(df.seller_json))
df = df.withColumn("buy_box_seller_type", df.seller_json_parsed.buy_box_seller_type).withColumn(
"account_name", df.seller_json_parsed.account_name).drop("seller_json_parsed", "seller_json")
return df
@staticmethod
def clean_kafka_df(df):
df = df.withColumnRenamed("seller_id", "account_id")
# |asin_zr_flow_proportion|asin_ao_val|asin_amazon_orders|variant_info|matrix_flow_proportion|matrix_ao_val|
df = df.select("asin", "parentAsin", "title", "variat_num", "best_sellers_rank", "best_sellers_herf", "price", "rating",
"brand", "account_id", "account_name", "account_url", "buy_box_seller_type",
"volume", "weight", "weight_str", "launch_time", "total_comments", "page_inventory", "asinUpdateTime", "site_name", "node_id",
"buy_sales", 'asin_amazon_orders', 'asin_ao_val', 'matrix_ao_val', "asin_zr_flow_proportion", 'matrix_flow_proportion')
return df
def rename_cols(self, df):
# 计算redis的key
df = df.withColumn(
'key_outer', self.u_cal_crc32('asin', F.lit(self.batch_size))
)
df = df.withColumn(
'key_inner', self.u_cal_bkdr('asin')
)
df.show(5, truncate=False)
df = df.withColumnRenamed("variat_num", "asinVarNum")
df = df.withColumnRenamed("asin_bs_cate_1_rank", "oneCategoryRank")
df = df.withColumnRenamed("rank_and_category", "bestSellersRank") # 解析后的
df = df.withColumnRenamed("best_sellers_herf", "lastHerf")
df = df.withColumnRenamed("asin_ao_val", "aoVal")
df = df.withColumnRenamed("asin_bsr_orders", "bsrOrders")
df = df.withColumnRenamed("asin_bsr_orders_sale", "bsrOrdersSale")
df = df.withColumnRenamed("brand", "brandName")
df = df.withColumnRenamed("account_id", "accountId")
df = df.withColumnRenamed("account_name", "accountName")
df = df.withColumnRenamed("account_url", "accountUrl")
df = df.withColumnRenamed("buy_box_seller_type", "buyBoxSellerType")
df = df.withColumnRenamed("launch_time", "launchTime")
df = df.withColumnRenamed("total_comments", "totalComments")
df = df.withColumnRenamed("page_inventory", "pageInventory")
df = df.withColumnRenamed("buy_sales", "asinBoughtMonth")
df = df.withColumnRenamed("asin_amazon_orders", "asinAmazonOrders")
df = df.withColumnRenamed("asin_ao_val", "aoVal")
df = df.withColumnRenamed("matrix_ao_val", "matrixAoVal")
df = df.withColumnRenamed("asin_zr_flow_proportion", "asinZrFlowProportion")
df = df.withColumnRenamed("matrix_flow_proportion", "asinZrFlowProportionMatrix")
# df = df.withColumnRenamed("fd_country_name", "fdCountryName")
df = df.select('asin', 'parentAsin', 'title', 'asinVarNum', 'oneCategoryRank', 'bestSellersRank', 'lastHerf', 'aoVal', 'matrixAoVal', 'price', 'rating',
'bsrOrders', 'bsrOrdersSale', 'brandName', 'accountId', 'accountName', 'accountUrl', 'buyBoxSellerType',
'volume', 'weight', 'launchTime', 'totalComments', 'pageInventory', 'asinUpdateTime', 'asinBoughtMonth', "asinAmazonOrders",
"fdCountryName", "key_outer", "key_inner", "volumeFormat", "weightFormat", "isSelfAsin", "auctionsNum", "skusNumCreat", "asinZrFlowProportion", "asinZrFlowProportionMatrix")
return df
def get_topic_name(self):
if self.site_name in ["us", "uk", "de"] and self.date_type == "month":
self.topic_name = f"{site_name}_asin_detail_{self.date_type}_{self.date_info.replace('-', '_')}"
else:
self.topic_name = f"{site_name}_asin_detail"
def handle_kafka_stream(self, kafka_df, epoch_id):
try:
count = kafka_df.count()
print("当前批次传输的数据量为df.count():", count)
if count == 0:
pass
# 确保schema非空以避免NoneType错误
if not self.schema:
raise ValueError("Schema is not defined")
# df.show(5, truncate=False)
print("df.columns:", kafka_df.columns)
# df = df.select("asin", "launch_time", "volume", "weight", "weight_str", "node_id", "variat_num", "best_sellers_rank", "best_sellers_herf", "seller_id", "account_url", "account_name", "site_name")
kafka_df = self.handle_asin_buy_box_seller_type(kafka_df) # 处理卖家类型
kafka_df = CommonUtil.get_asin_variant_attribute(df_asin_detail=kafka_df, df_asin_measure=self.df_asin_measure, partition_num=20, use_type=0)
print("df.columns:", kafka_df.columns)
df = self.clean_kafka_df(df=kafka_df)
# df.show(5, truncate=False)
# # 提取排名和分类
df_bs = self.handle_asin_bs_category_rank(df=df.select("asin", "best_sellers_rank"))
# join
df_save = df.join(
df_bs, on='asin', how='left'
).join(
self.df_asin_bs, on='node_id', how='left'
).join(
self.df_self_asin, on='asin', how='left'
).join(
self.df_asin_sku, on='asin', how='left'
).join(
self.df_fd_asin_info, on='account_id', how='left'
)
df_save = df_save.na.fill({"isSelfAsin": 0})
# 计算bsr效率
df_save = df_save.join(
self.df_bs_report, on=['asin_bs_cate_1_rank', 'asin_bs_cate_1_id'], how='left'
)
df_save = df_save.withColumn("volumeFormat",
F.when(F.col("volume").isNotNull(), self.u_extract_dimensions("volume")))
df_save = df_save.withColumn("weightFormat",
F.when(F.col("weight_str").isNotNull(), self.u_extract_weight("weight_str")))
df_save = df_save.withColumn("asin_bsr_orders_sale", df_save.price * df_save.asin_bsr_orders)
df_save = self.rename_cols(df=df_save)
df_save = df_save.fillna({"isSelfAsin": 0})
self.save_to_redis(df=df_save)
except Exception as e:
print(e, traceback.format_exc())
# # 与从Kafka读取的数据进行连接
# joined_df = df.join(self.df_asin_title, "asin", how='left')
# # 执行你的转换和聚合逻辑
# result_df = joined_df.groupBy("asin").count()
# result_df.show(10, truncate=False)
print("epoch_id:", epoch_id, datetime.now().strftime("%Y-%m-%d %H:%M:%S"))
def handle_kafka_history(self, kafka_df):
try:
print("df.columns:", kafka_df.columns)
# df = df.select("asin", "launch_time", "volume", "weight", "weight_str", "node_id", "variat_num", "best_sellers_rank", "best_sellers_herf", "seller_id", "account_url", "account_name", "site_name")
# kafka_df.show(10, truncate=False)
kafka_df.show(10)
# 处理卖家类型
kafka_df = self.handle_asin_buy_box_seller_type(kafka_df)
# kafka_df.show(10)
kafka_df = CommonUtil.get_asin_variant_attribute(df_asin_detail=kafka_df, df_asin_measure=self.df_asin_measure, partition_num=20, use_type=0)
# |asin_zr_counts|asin_adv_counts|asin_st_counts|asin_amazon_orders|asin_zr_flow_proportion|asin_ao_val|asin_amazon_orders|variant_info|matrix_flow_proportion|matrix_ao_val|
# kafka_df.show(10)
df = self.clean_kafka_df(df=kafka_df) # 选择需要的列
# df = df.withColumn("volumeFormat", F.when(F.col("volume").isNotNull(), self.u_extract_dimensions("volume")))
# df = df.withColumn("weightFormat", F.when(F.col("weight_str").isNotNull(), self.u_extract_weight("weight_str")))
# # df.select("asin", "volume", "volumeFormat", "weight_str", "weightFormat").show(20, truncate=False)
#
# df.show(5, truncate=False)
# # 提取排名和分类
df_bs = self.handle_asin_bs_category_rank(df=df.select("asin", "best_sellers_rank"))
# join
df_save = df.join(
df_bs, on='asin', how='left'
).join(
self.df_asin_bs, on='node_id', how='left'
).join(
self.df_self_asin, on='asin', how='left'
).join(
self.df_asin_sku, on='asin', how='left'
).join(
self.df_fd_asin_info, on='account_id', how='left'
)
# 计算bsr效率
df_save = df_save.join(
self.df_bs_report, on=['asin_bs_cate_1_rank', 'asin_bs_cate_1_id'], how='left'
)
df_save = df_save.withColumn("volumeFormat", F.when(F.col("volume").isNotNull(), self.u_extract_dimensions("volume")))
df_save = df_save.withColumn("weightFormat", F.when(F.col("weight_str").isNotNull(), self.u_extract_weight("weight_str")))
# df_save.select("asin", "volume", "volumeFormat", "weight_str", "weightFormat").show(20, truncate=False)
df_save = df_save.withColumn("asin_bsr_orders_sale", df_save.price * df_save.asin_bsr_orders)
df_save = self.rename_cols(df=df_save)
df_save = df_save.fillna({"isSelfAsin": 0})
# df_save.show(10)
self.save_to_redis(df=df_save)
except Exception as e:
print(e, traceback.format_exc())
def save_to_redis(self, df):
# 将Spark DataFrame转换为Pandas DataFrame
pdf = df.toPandas()
print(f"开始存储数据: {pdf.shape}")
# 遍历Pandas DataFrame并将数据插入到Redis
for index, row in pdf.iterrows():
# 创建一个复合键,或者根据你的需要选择适当的键
# 1. 外层key为10197, 内层可以为10197:15931
# redis_key = f"{row['key_outer']}:{row['key_inner']}" #
# # 插入值到Redis - 在这里我仅仅存储了一个值,你可以存储一个字典来存储多个值
# self.client.set(redis_key, row['value'])
# row_json = row.to_json(orient='split')
# self.client.set(redis_key, row_json)
# 2. 外层key为10197, 内层可以为15931
# redis_key = row['key_outer']
# redis_field = row['key_inner']
# row_json = row.to_json(orient='split')
# self.client.hset(redis_key, redis_field, row_json)
# 3. hashmap + 外层key为10197, 内层可以为15931
redis_key = row['key_outer']
# redis_field = row['key_inner']
redis_field = row['asin']
row_dict = row.to_dict()
# row_dict = {k: str(v).lower().replace("none", "").replace("nan", "") for k, v in row_dict.items()} # 确保所有的值都是字符串
row_dict = {k: str(v).replace("None", "").replace("none", "").replace("NaN", "").replace("nan", "") for k, v in row_dict.items()} # 确保所有的值都是字符串
row_dict = {k: format(v, ".2f") if isinstance(v, (int, float)) else str(v).replace("None", "").replace(
"nan", "") for k, v in row_dict.items()}
del row_dict["key_outer"]
del row_dict["key_inner"]
row_json = json.dumps(row_dict)
self.client.hset(redis_key, redis_field, row_json)
if __name__ == '__main__':
site_name = sys.argv[1] # 参数1:站点
date_type = sys.argv[2] # 参数2:类型:week/4_week/month/quarter/day
date_info = sys.argv[3] # 参数3:年-周/年-月/年-季/年-月-日, 比如: 2022-1
consumer_type = sys.argv[4] # 参数3:年-周/年-月/年-季/年-月-日, 比如: 2022-1
handle_obj = DimStAsinInfo(site_name=site_name, date_type=date_type, date_info=date_info, consumer_type=consumer_type, batch_size=100000)
# handle_obj.run()
handle_obj.run_kafka()