common_udf.py 34.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
import re
from datetime import datetime
from pyspark.sql import functions as F
from pyspark.sql.types import ArrayType, MapType, StringType

from yswg_utils.udf_util import UdfUtil
import json


def udf_title_number_parse_reg():
    def udf_title_number_parse(title):
        val = udf_get_package_quantity(title)
        if val is not None:
            return [{
                "match": None,
                "label": None,
                "value": udf_get_package_quantity(title),
            }]
        return None

    return F.udf(udf_title_number_parse, ArrayType(MapType(StringType(), StringType())))


def get_Fba_Fee(longVal: float,
                width: float,
                high: float,
                weight: float,
                ):
    """
    根据长宽高计算fba类型,长宽高
    :param longVal:长=> cm
    :param width: 宽=> cm
    :param high:  高=> cm
    :param weight: 重量单位为g
    :return:
    """
    fee_type = 0
    fba_fee = 0
    if (longVal <= 36 and width <= 28 and high <= 1.6 and weight <= 113.5):
        fee_type = 1
        fba_fee = 3.22
    elif (longVal <= 36 and width <= 28 and high <= 1.6 and weight > 113.5 and weight <= 227):
        fee_type = 2
        fba_fee = 3.4
    elif (longVal <= 36 and width <= 28 and high <= 1.6 and weight > 227 and weight <= 340.5):
        fee_type = 3
        fba_fee = 3.58
    elif (longVal <= 36 and width <= 28 and high <= 1.6 and weight > 340.5 and weight <= 454):
        fee_type = 4
        fba_fee = 3.77
    elif (longVal <= 43 and width <= 34 and high <= 19 and weight <= 113.5):
        fee_type = 5
        fba_fee = 3.86
    elif (longVal <= 43 and width <= 34 and high <= 19 and weight > 113.5 and weight <= 227):
        fee_type = 6
        fba_fee = 4.08
    elif (longVal <= 43 and width <= 34 and high <= 19 and weight > 227 and weight <= 340.5):
        fee_type = 7
        fba_fee = 4.24
    elif (longVal <= 43 and width <= 34 and high <= 19 and weight > 340.5 and weight <= 454):
        fee_type = 8
        fba_fee = 4.75
    elif (longVal <= 43 and width <= 34 and high <= 19 and weight > 454 and weight <= 681):
        fee_type = 9
        fba_fee = 5.4
    elif (longVal <= 43 and width <= 34 and high <= 19 and weight > 681 and weight <= 908):
        fee_type = 10
        fba_fee = 5.69
    elif (longVal <= 43 and width <= 34 and high <= 19 and weight > 908 and weight <= 1135):
        fee_type = 11
        fba_fee = 6.1
    elif (longVal <= 43 and width <= 34 and high <= 19 and weight > 1135 and weight <= 1362):
        fee_type = 12
        fba_fee = 6.39
    elif (longVal <= 43 and width <= 34 and high <= 19 and weight > 1362 and weight <= 9080):
        fee_type = 13
        fba_fee = 7.33
    elif (longVal <= 152.4 and (longVal + 2 * (width + high)) <= 330.2 and weight <= 31780):
        fee_type = 14
        fba_fee = 10.15
    elif (longVal <= 274.32 and (longVal + 2 * (width + high)) <= 419.1 and weight <= 68100):
        fee_type = 15
        fba_fee = 19.47
    elif (longVal <= 274.32 and (longVal + 2 * (width + high)) > 419.1 and weight <= 68100):
        fee_type = 16
        fba_fee = 90.81
    elif (longVal > 274.32 and (longVal + 2 * (width + high)) > 419.1 and weight > 68100):
        fee_type = 17
        fba_fee = 159.32
    return (fee_type, fba_fee)


def udf_get_package_quantity_with_flag(title):
    """
    获取打包数量
    :param title:
    :return:
    """
    if title != '':
        title = str(title).lower()
        title = title.replace(' ', ' ')
        eligible_list = []
        unit_list = []
        parse_list = []
        thousand_bit_symmbol_count = 0
        eligible_value_map = {"one": 1, "two": 2, "three": 3, "four": 4, "five": 5,
                              "six": 6, "seven": 7, "eight": 8, "nine": 9, "ten": 10}
        key_list = ['set', 'pack', 'pair', 'box', 'quantity']
        if title not in ['null', 'none']:
            patterns = [
                r'\b(?<!\d\.\d)(?<!\d\sx\s)((?:\d{1,3})(?:,\d{3})*|\d+)(?!\.\d)(?!%)[-_\s]*(bulk|total|pc|pcs|piece|pieces|set|pack|packs|pairs|pk|pair|count|ct|counts|sets|sheets|sheet|wrap|wraps|roll|rolls|box|boxes|quantity)(?![a-zA-Z])',
                r'\b((?:set|pack|pair|pairs|box|case|carton|quantity) of) ((?:\d{1,3})(?:,\d{3})*|\d+)(?!\.\d)(?!\sx\s\d)(?!%)\b',
                r'\b(total|count|quantity)\s*[-_\s]*\s*((?:\d{1,3})(?:,\d{3})*|\d+)(?!\.)(?!\sx\s\d)\b(?!%)',
                r'\b(one|two|three|four|five|six|seven|eight|nine|ten)(?: +)(bulk|total|pc|pcs|piece|pieces|set|pack|packs|pairs|pk|pair|count|ct|counts|sets|sheets|sheet|wrap|wraps|roll|rolls|box|boxes|quantity)(?![a-zA-Z])',
                r'\b((?:set|pack|pair|pairs|box|case|carton|quantity) of) (one|two|three|four|five|six|seven|eight|nine|ten)\b',
                r'\b(total|count|quantity)(?: +)(one|two|three|four|five|six|seven|eight|nine|ten)\b'
            ]
            for i in range(len(patterns)):
                pattern = patterns[i]
                result_list = re.findall(pattern, title)
                if len(result_list) > 0:
                    for result in result_list:
                        if i in [0, 3]:
                            eligible_element = result[0]
                            unit_element = result[1]
                        else:
                            eligible_element = result[1]
                            unit_element = result[0]
                        eligible_list.append(eligible_element)
                        unit_list.append(unit_element)
            if eligible_list and unit_list:
                for key in key_list:
                    if key in unit_list and f'{key} of' in unit_list:
                        index = unit_list.index(key)
                        unit_list.pop(index)
                        eligible_list.pop(index)
                for eligible_element in eligible_list:
                    if eligible_element in eligible_value_map.keys():
                        eligible_element_value = eligible_value_map[eligible_element]
                        parse_list.append(int(eligible_element_value))
                    else:
                        if str(eligible_element).count(',') > 0:
                            thousand_bit_symmbol_count = thousand_bit_symmbol_count + 1
                            eligible_element = str(eligible_element).replace(',', '')
                        if (not str(eligible_element).startswith('0')) and (int(eligible_element) < 10000) and (
                                int(eligible_element) >= 0):
                            parse_list.append(int(eligible_element))
        if len(parse_list) == 1:
            return parse_list[0], 0
        elif len(parse_list) > 1:
            if thousand_bit_symmbol_count >= 2 and len(parse_list) >= 3:
                return min(parse_list), 1
            else:
                return max(parse_list), 1
        else:
            return None, None


def udf_get_package_quantity(title):
    """
    获取打包数量
    :param title:
    :return:
    """
    if title != '':
        title = str(title).lower()
        title = title.replace(' ', ' ')
        eligible_list = []
        unit_list = []
        parse_list = []
        thousand_bit_symmbol_count = 0
        eligible_value_map = {"one": 1, "two": 2, "three": 3, "four": 4, "five": 5,
                              "six": 6, "seven": 7, "eight": 8, "nine": 9, "ten": 10}
        key_list = ['set', 'pack', 'pair', 'box', 'quantity']
        if title not in ['null', 'none']:
            patterns = [
                r'\b(?<!\d\.\d)(?<!\d\sx\s)((?:\d{1,3})(?:,\d{3})*|\d+)(?!\.\d)(?!%)[-_\s]*(bulk|total|pc|pcs|piece|pieces|set|pack|packs|pairs|pk|pair|count|ct|counts|sets|sheets|sheet|wrap|wraps|roll|rolls|box|boxes|quantity)(?![a-zA-Z])',
                r'\b((?:set|pack|pair|pairs|box|case|carton|quantity) of) ((?:\d{1,3})(?:,\d{3})*|\d+)(?!\.\d)(?!\sx\s\d)(?!%)\b',
                r'\b(total|count|quantity)\s*[-_\s]*\s*((?:\d{1,3})(?:,\d{3})*|\d+)(?!\.)(?!\sx\s\d)\b(?!%)',
                r'\b(one|two|three|four|five|six|seven|eight|nine|ten)(?: +)(bulk|total|pc|pcs|piece|pieces|set|pack|packs|pairs|pk|pair|count|ct|counts|sets|sheets|sheet|wrap|wraps|roll|rolls|box|boxes|quantity)\b',
                r'\b((?:set|pack|pair|pairs|box|case|carton|quantity) of) (one|two|three|four|five|six|seven|eight|nine|ten)\b',
                r'\b(total|count|quantity)(?: +)(one|two|three|four|five|six|seven|eight|nine|ten)\b'
            ]
            for i in range(len(patterns)):
                pattern = patterns[i]
                result_list = re.findall(pattern, title)
                if len(result_list) > 0:
                    for result in result_list:
                        if i in [0, 3]:
                            eligible_element = result[0]
                            unit_element = result[1]
                        else:
                            eligible_element = result[1]
                            unit_element = result[0]
                        eligible_list.append(eligible_element)
                        unit_list.append(unit_element)
            if eligible_list and unit_list:
                for key in key_list:
                    if key in unit_list and f'{key} of' in unit_list:
                        index = unit_list.index(key)
                        unit_list.pop(index)
                        eligible_list.pop(index)
                for eligible_element in eligible_list:
                    if eligible_element in eligible_value_map.keys():
                        eligible_element_value = eligible_value_map[eligible_element]
                        parse_list.append(int(eligible_element_value))
                    else:
                        if str(eligible_element).count(',') > 0:
                            thousand_bit_symmbol_count = thousand_bit_symmbol_count + 1
                            eligible_element = str(eligible_element).replace(',', '')
                        if (not str(eligible_element).startswith('0')) and (int(eligible_element) < 10000) and (
                                int(eligible_element) >= 0):
                            parse_list.append(int(eligible_element))
        if len(parse_list) == 1:
            return parse_list[0]
        elif len(parse_list) > 1:
            if thousand_bit_symmbol_count >= 2 and len(parse_list) >= 3:
                return min(parse_list)
            else:
                return max(parse_list)
        else:
            return None


# 公用函数-处理String类型空值返回NoneType
def udf_handle_string_null_value(value):
    # 转小写并去除头尾空值
    if value is not None:
        handle_value = str(value).strip().lower()
        if handle_value in ['null', 'none', '', '-1']:
            return None
        else:
            return value
    return None


def parse_best_sellers_href(href: str):
    """
    根据asin想去 best_sellers 解析获取一级分类/当前分类
    :param href:
    :return:
    """
    arr = href.split("/")

    last_val = UdfUtil.safeIndex(arr, len(arr) - 1, None)

    if "ref=" in last_val:
        category_id = UdfUtil.safeIndex(arr, len(arr) - 2, None)
        category_first_id = UdfUtil.safeIndex(arr, len(arr) - 3, None)
    else:
        category_id = UdfUtil.safeIndex(arr, len(arr) - 1, None)
        category_first_id = UdfUtil.safeIndex(arr, len(arr) - 2, None)

    return (category_id, category_first_id)
    pass


def parse_bsr_url(nodes_num: int, url: str):
    """
    统一解析链接获取 bsr 分类id等数据
    :param nodes_num:
    :param url:
    :return:
    """
    arr = url.split("/")
    if not "ref=" in url:
        ref_suffix = None
        category_id = UdfUtil.safeIndex(arr, len(arr) - 1, None)
        category_first_id = UdfUtil.safeIndex(arr, len(arr) - 2, None)
    else:
        ref_suffix = UdfUtil.safeIndex(arr, len(arr) - 1, None)
        category_first_id = UdfUtil.safeIndex(arr, len(arr) - 3, None)
        category_id = UdfUtil.safeIndex(arr, len(arr) - 2, None)
    if nodes_num == 1:
        level = 1
    elif url.endswith("_0"):
        level = 2
    elif url.endswith(f"{category_first_id}_1"):
        level = 3
    else:
        level = 4

    # 获取 parent id
    if level == 1:
        # 根节点
        category_id = "0"
        category_first_id = None
        category_parent_id = None
    elif level == 2:
        # 一级节点
        category_id = category_id
        category_first_id = category_id
        category_parent_id = "0"
    elif level == 3:
        # 一级节点下的次级节点
        category_id = category_id
        category_first_id = category_first_id
        category_parent_id = category_first_id
    elif level == 4:
        category_id = category_id
        category_first_id = category_first_id
        if ref_suffix is not None:
            category_parent_id = ref_suffix[ref_suffix.rfind("_") + 1:]
        else:
            category_parent_id = None
    else:
        category_id = None
        category_first_id = None
        category_parent_id = None

    return {
        "category_id": category_id,
        "category_first_id": category_first_id,
        "category_parent_id": category_parent_id
    }
    pass


def parse_weight_str(weight_str: str, site_name: str):
    """
    解析重量字符串获取重量和单位,逗号分隔
    :param weight_str:
    :param site_name:
    :return:
    """
    val = None
    weight_type = 'pounds' if site_name == 'us' else 'grams'
    if weight_str is not None:
        if 'pounds' in weight_str:
            match = re.search(r"(\d+\.{0,}\d{0,})\D{0,}pounds", weight_str)
            val = round(float(match.group(1)), 3) if site_name == 'us' and match else round(
                float(match.group(1)) * 1000 * 0.454, 3) if match else None
        elif 'ounces' in weight_str:
            match = re.search(r"(\d+\.{0,}\d{0,})\D{0,}ounces", weight_str)
            val = round(float(match.group(1)) / 16, 3) if site_name == 'us' and match else round(
                float(match.group(1)) / 16 * 1000 * 0.454, 3) if match else None
        elif any(substring in weight_str for substring in ['kilogram', ' kg']):
            weight_str = weight_str.replace(' kg', ' kilogram')
            match = re.search(r"(\d+\.{0,}\d{0,})\D{0,}kilogram", weight_str)
            val = round(float(match.group(1)) / 0.454, 3) if site_name == 'us' and match else round(
                float(match.group(1)) * 1000, 3) if match else None
        elif any(substring in weight_str for substring in ['milligrams']):
            match = re.search(r"(\d+\.{0,}\d{0,})\D{0,}milligrams", weight_str)
            val = round(float(match.group(1)) / 1000 / 1000 / 0.454, 3) if site_name == 'us' and match else round(
                float(match.group(1)) / 1000, 3) if match else None
        elif ' gram' in weight_str:
            match = re.search(r"(\d+\.{0,}\d{0,})\D{0,} gram", weight_str)
            val = round(float(match.group(1)) / 1000 / 0.454, 3) if site_name == 'us' and match else round(
                float(match.group(1)), 3) if match else None
        elif ' g' in weight_str:
            match = re.search(r"(\d+\.{0,}\d{0,})\D{0,} g", weight_str)
            val = round(float(match.group(1)) / 1000 / 0.454, 3) if site_name == 'us' and match else round(
                float(match.group(1)), 3) if match else None

    return val, weight_type


def udf_new_asin_flag(launch_time, cal_day):
    """
    计算asin是否新品标记公共udf函数
    :param launch_time: asin上架时间
    :param cal_day: 计算日期(周取周最后一天,月取月最后一天,需调用工具类get_calDay_by_dateInfo获取)
    :return: 是否新品标记,1为新品;0为非新品
    """
    if launch_time is None or cal_day is None:
        return None

    date_format = "%Y-%m-%d"
    try:
        # 将日期字符串转换为 datetime 对象
        datetime1 = datetime.strptime(launch_time, date_format)
        datetime2 = datetime.strptime(cal_day, date_format)
        # 计算日期的偏移量
        offset = (datetime2 - datetime1).days
        # 判断偏移量是否小于180天,是则确定为新品
        if offset <= 180:
            return 1
        else:
            return 0
    except ValueError:
        # 日期字符串格式不正确
        return None


def category_craw_flag(category_first_id, asin: str = None):
    """
    用于判断asin或者分类是否爬取
    :param category_first_id:
    :param asin:
    """
    if asin is not None and not asin.startswith("B0"):
        return False
    arr = [
        "audible",
        "books",
        "digital-text",
        "dmusic",
        "mobile-apps",
        "movies-tv",
        "music",
        "software",
        "videogames"
    ]
    if category_first_id is None or category_first_id in arr:
        return False
    return True


def sort_volume(val1, val2, val3):
    """
    排序长宽高
    """

    def custom_sort(item):
        if item is None:
            return 0
        return item

    arr = [val1, val2, val3]
    arr.sort(key=custom_sort, reverse=True)

    l = UdfUtil.safeIndex(arr, 0, None)
    w = UdfUtil.safeIndex(arr, 1, None)
    h = UdfUtil.safeIndex(arr, 2, None)
    return l, w, h


def parse_asin_volume_str(volume_str, sortFlag=False):
    """
    解析 volume_str
    :param volume_str: 体积长宽高字符串
    :param sortFlag: 是否按照大小定义长宽高排序
    :return: l, w, h, type 返回长宽高单位(均为原始数据)
    """
    if volume_str is None:
        return None, None, None, None

    types = re.findall(r"inches|inch|cm|centímetros|centimetres|milímetros|millimeter|mm|metros", volume_str)
    #  多个单位的截取第一个单位
    if len(types) >= 2:
        volume_str = volume_str[0:volume_str.find(types[0])]

    matches = re.findall(r"(\d+(\.\d+)?)", volume_str)
    values = [float(val[0]) for val in matches]
    if sortFlag:
        values.sort(reverse=True)

    l = UdfUtil.safeIndex(values, 0, None)
    w = UdfUtil.safeIndex(values, 1, None)
    h = UdfUtil.safeIndex(values, 2, None)
    type = UdfUtil.safeIndex(types, 0, None)
    if type in ['inches', 'inch']:
        type = "inches"
    elif type in ['cm', 'centímetros', 'centimetres']:
        type = "cm"
    elif type in ['milímetros', 'millimeter', 'mm']:
        type = "mm"
    elif type in ['metros']:
        type = "m"
    else:
        type = "inches"
        sortVal = re.findall(r"l|d|w|h", volume_str)
        if len(sortVal) > 0:
            tmpMap = {
                str(key): UdfUtil.safeIndex(values, i, None) for i, key in enumerate(sortVal)
            }
            l = tmpMap.get("l") or tmpMap.get("d")
            w = tmpMap.get("w")
            h = tmpMap.get("h")
    return l, w, h, type


def udf_rank_and_category(best_sellers_rank):
    """
    解析bs分类名称和排名
    """
    pattern = r"#([\d,]+) in ([\w&' ]+)"
    matches = re.findall(pattern, best_sellers_rank)

    bs_rank_str = ",".join([rank.replace(",", "") for rank, category in matches])
    bs_category_str = ",".join([category.strip().replace(",", " ") for rank, category in matches])
    return bs_rank_str, bs_category_str


def udf_ele_mattch(match_text: str, ele_list_str: str):
    """
    字符串多包含多个元素精准匹配
    :param match_text: 待匹配的字符串
    :param ele_list_str: 需要匹配的匹配词list(此处可将list直接str(list)传入)
    :return: 返回字符串中匹配到的多个匹配词的字符串。采用”,“拼接,可根据","拆分;如都无匹配结果则为None
    """
    pattern = re.compile(r'(?<!\+|\*|\-|\%|\.)\b({})\b'.format('|'.join([re.escape(x) for x in ele_list_str])), flags=re.IGNORECASE)
    ele_list = re.findall(pattern, match_text)
    if ele_list:
        return ','.join(set(ele_list))
    else:
        return None


# 插件-体积标准提取
def udf_extract_volume_format(volume_str: str):
    # 解析类型
    # pattern = r'\b\w+\b'
    volume_str = str(volume_str).lower()
    pattern = r'[a-z]+'
    matches = re.findall(pattern, volume_str)

    # 使用集合存储匹配的单词
    type_set = set()
    for word in matches:
        if word in ['inches', 'inch']:
            type_set.add('inches')
        elif word in ['cm', 'centímetros', 'centimetres']:
            type_set.add('cm')
        elif word in ['milímetros', 'millimeter', 'mm']:
            type_set.add('mm')
        elif word in ['metros']:
            type_set.add('m')

    # 根据集合的长度返回结果
    if len(type_set) == 1:
        asin_volume_type = list(type_set)[0]
    elif len(type_set) >= 2:
        asin_volume_type = ','.join(type_set)
    else:
        asin_volume_type = ''

    # 解析长宽高
    # length, width, height = None, None, None
    if asin_volume_type == 'cm,inches':
        num_inches = volume_str.find('inch')
        num_cm = volume_str.find('cm')
        volume_str = volume_str[:num_inches] if num_cm > num_inches else volume_str[num_cm:num_inches]
    dimensions = re.findall(r"(\d+(\.\d+)?)", volume_str)
    dimensions = [float(dim[0]) for dim in dimensions]

    if len(dimensions) == 1:
        length = dimensions[0]
        result = f"{length}"
    elif len(dimensions) == 2:
        # if asin_volume_type == '':
        #     if "l" in volume_str and "w" in volume_str:
        #         length, width = dimensions
        #     elif "w" in volume_str and "h" in volume_str:
        #         width, height = dimensions
        #     elif "l" in volume_str and "h" in volume_str:
        #         length, height = dimensions
        #     elif "d" in volume_str and "w" in volume_str:
        #         length, width = dimensions
        #     elif "d" in volume_str and "h" in volume_str:
        #         length, height = dimensions
        # else:
        #     length, width = dimensions
        length, width = dimensions
        result = f"{length}*{width}"
    elif len(dimensions) == 3:
        length, width, height = dimensions
        result = f"{length}*{width}*{height}"
    elif len(dimensions) >= 4:
        length, width, height = dimensions[:3]
        result = f"{length}*{width}*{height}"
    else:
        result = ""

    if asin_volume_type == "inches":
        # 单位转换成cm
        return "*".join([str(round(float(dim) * 2.54, 2)) for dim in result.split("*")]) + "cm"
    else:
        return f"{result}{asin_volume_type}"


# 大数据 -- 返回长+宽+高+类型
def udf_extract_volume_dimensions(volume_str: str):
    # 解析类型
    # pattern = r'\b\w+\b'
    volume_str = str(volume_str).lower()
    pattern = r'[a-z]+'
    matches = re.findall(pattern, volume_str)

    # 使用集合存储匹配的单词
    type_set = set()
    for word in matches:
        if word in ['inches', 'inch']:
            type_set.add('inches')
        elif word in ['cm', 'centímetros', 'centimetres']:
            type_set.add('cm')
        elif word in ['milímetros', 'millimeter', 'mm']:
            type_set.add('mm')
        elif word in ['metros']:
            type_set.add('m')

    # 根据集合的长度返回结果
    if len(type_set) == 1:
        asin_volume_type = list(type_set)[0]
    elif len(type_set) >= 2:
        asin_volume_type = ','.join(type_set)
    else:
        asin_volume_type = ''

    # 解析长宽高
    length, width, height = None, None, None
    if asin_volume_type == 'cm,inches':
        num_inches = volume_str.find('inch')
        num_cm = volume_str.find('cm')
        volume_str = volume_str[:num_inches] if num_cm > num_inches else volume_str[num_cm:num_inches]
    dimensions = re.findall(r"(\d+(\.\d+)?)", volume_str)
    dimensions = [float(dim[0]) for dim in dimensions]

    if len(dimensions) == 1:
        length = dimensions[0]
    elif len(dimensions) == 2:
        if asin_volume_type == '':
            if "l" in volume_str and "w" in volume_str:
                length, width = dimensions
            elif "w" in volume_str and "h" in volume_str:
                width, height = dimensions
            elif "l" in volume_str and "h" in volume_str:
                length, height = dimensions
            elif "d" in volume_str and "w" in volume_str:
                length, width = dimensions
            elif "d" in volume_str and "h" in volume_str:
                length, height = dimensions
            else:
                length, width = dimensions
        else:
            length, width = dimensions
        asin_volume_type = "inches"
    elif len(dimensions) >= 3:
        length, width, height = dimensions[:3]
        asin_volume_type = "inches"

    # 降序排序
    example_list = [length, width, height]

    # 使用 sorted 函数进行排序
    # key=lambda x: (x is not None, x) 确保 None 值被视为最小值并排在最后
    # reverse=True 以实现降序排序
    sorted_list = sorted(example_list, key=lambda x: (x is not None, x), reverse=True)
    length, width, height = sorted_list
    return (length, width, height, asin_volume_type)


# 插件-重量标准提取
def udf_extract_weight_format(weight_str: str):
    """
    解析重量字符串获取重量和单位,逗号分隔
    :param weight_str:
    :param site_name:
    :return:
    """
    val = None
    # weight_type = 'pounds' if site_name == 'us' else 'grams'
    weight_type = 'g'
    if weight_str is not None:
        if 'pounds' in weight_str:
            match = re.search(r"(\d+\.{0,}\d{0,})\D{0,}pounds", weight_str)
            val = round(float(match.group(1)) * 1000 * 0.454, 3) if match else None
        elif 'ounces' in weight_str:
            match = re.search(r"(\d+\.{0,}\d{0,})\D{0,}ounces", weight_str)
            val = round(float(match.group(1)) / 16 * 1000 * 0.454, 3) if match else None
        elif any(substring in weight_str for substring in ['kilogram', ' kg']):
            weight_str = weight_str.replace(' kg', ' kilogram')
            match = re.search(r"(\d+\.{0,}\d{0,})\D{0,}kilogram", weight_str)
            val = round(float(match.group(1)) * 1000, 3) if match else None
        elif any(substring in weight_str for substring in ['milligrams']):
            match = re.search(r"(\d+\.{0,}\d{0,})\D{0,}milligrams", weight_str)
            val = round(float(match.group(1)) / 1000, 3) if match else None
        elif ' gram' in weight_str:
            match = re.search(r"(\d+\.{0,}\d{0,})\D{0,} gram", weight_str)
            val = round(float(match.group(1)), 3) if match else None
        elif ' g' in weight_str:
            match = re.search(r"(\d+\.{0,}\d{0,})\D{0,} g", weight_str)
            val = round(float(match.group(1)), 3) if match else None
    if val:
        return f"{round(val, 2)}{weight_type}"
    else:
        return f"{val}"


# 分类提取-返回: 一级/当前分类id+一级/当前分类排名
# 参考dim_asin_bs_info.py使用
def udf_parse_bs_category(asin_bs_sellers_rank_lower, last_herf, all_best_sellers_href, cate_current_pattern,
                          cate_1_pattern):
    """
    asin_bs_sellers_rank_lower: 底部分类字符串
    last_herf: 最后一级分类链接
    all_best_sellers_href: 所有分类链接
    cate_current_pattern: 当前分类排名匹配规则
    cate_1_pattern: 一级分类排名匹配规则
    """

    # if (site_name == 'us' and date_type in ['month', 'month_week'] and date_info >= '2023-11') or (site_name != 'us' and date_type in ['week'] and date_info >= '2023-41'):
    #     href_list = all_best_sellers_href.split("&&&&")

    # 1. 判断用哪个字段来解析分类
    if str(all_best_sellers_href).lower() not in ['', 'none', 'null']:
        bs_href = all_best_sellers_href
    elif str(last_herf).lower() not in ['', 'none', 'null']:
        bs_href = last_herf
    else:
        bs_href = ''
    href_list = bs_href.replace("?tf=1", "").split("&&&&")

    # 新增climate-pledge分类优化--若最后一级是climate-pledge的分类,则向前取
    rank_flag = None
    while True:
        if '/climate-pledge' in href_list[-1] and len(href_list) >= 2:
            href_list.pop()
            rank_flag = True
        else:
            break

    # 2. 解析一级和当前 分类 + 排名
    # 2.1 提取分类
    if href_list:
        if len(href_list) == 1:
            cate_list = re.findall('bestsellers/(.*)/ref', href_list[0])
            if cate_list:
                if "/" in cate_list[0]:
                    cate_1_id, cate_current_id = cate_list[0].split("/")[0], cate_list[0].split("/")[-1]
                else:
                    cate_1_id, cate_current_id = cate_list[0].split("/")[0], None
            else:
                cate_1_id, cate_current_id = None, None
        else:
            cate_1_id = re.findall('bestsellers/(.*)/ref', href_list[0])[0] if re.findall('bestsellers/(.*)/ref',
                                                                                          href_list[0]) else None
            cate_current_id = re.findall('bestsellers/(.*)/ref', href_list[-1])[0] if re.findall('bestsellers/(.*)/ref',
                                                                                                 href_list[
                                                                                                     -1]) else None
            if "/" in cate_1_id:
                cate_1_id = cate_1_id.split("/")[0]
            if "/" in cate_current_id:
                cate_current_id = cate_current_id.split("/")[-1]
    else:
        cate_1_id, cate_current_id = None, None

    # 2.2 提取排名
    if asin_bs_sellers_rank_lower is not None:
        asin_bs_sellers_rank_lower2 = asin_bs_sellers_rank_lower.replace(".", "").replace(",", "").replace(" 100 ", "")
    else:
        asin_bs_sellers_rank_lower2 = ''
    rank_list = re.findall(cate_current_pattern, asin_bs_sellers_rank_lower2)  # 匹配排名
    rank_list = [int(rank) for rank in rank_list]  # 转换成int类型
    # print("rank_list:", rank_list)
    if rank_flag:
        if len(rank_list) > len(href_list):
            rank_list = rank_list[:len(href_list)]

    if rank_list:
        if len(rank_list) == 1:
            if cate_1_pattern in asin_bs_sellers_rank_lower:
                cate_1_rank, cate_current_rank = rank_list[0], None
            else:
                cate_1_rank, cate_current_rank = None, rank_list[0]
        else:
            if cate_1_pattern in asin_bs_sellers_rank_lower:
                cate_1_rank, cate_current_rank = rank_list[0], rank_list[-1]
            else:
                cate_1_rank, cate_current_rank = None, rank_list[0]
    else:
        cate_1_rank, cate_current_rank = None, None

    return cate_1_id, cate_current_id, cate_1_rank, cate_current_rank


# 将asin转换成1-10亿数值--从而可以划分指定分区表
def udf_asin_to_number(asin):
    """
    Convert a 10-character ASIN string to a unique number.
    This function assumes that ASIN consists of uppercase letters and digits.
    """

    def char_to_number(char):
        if char.isdigit():
            return int(char)
        else:
            return ord(char) - 55  # 'A' -> 10, 'B' -> 11, ..., 'Z' -> 35

    if len(asin) != 10:
        raise ValueError("ASIN must be 10 characters long")

    base = 36
    asin_number = 0
    for i, char in enumerate(reversed(asin)):
        asin_number += char_to_number(char) * (base ** i)

    # The final number is taken modulo 1 billion to fit the range 1-10 billion
    return asin_number % 1000000000


# 判断buy_box_seller_type类型
def udf_parse_seller_json(seller_json):
    """
    :param ship_from: 爬虫爬取asin详情页面上的字段信息
    :param sold_by: 爬虫爬取asin详情页面上的字段信息
    :param fulfilled_by:爬虫爬取asin详情页面上的字段信息
    :return: buy_box_seller_type: 1.amazon,2.fba,3.fbm,4.默认值(无类型)
    :return: 类型、店铺名称、店铺id
    """
    if not seller_json:
        return 0, None, None
    else:
        seller_info_parsed = json.loads(seller_json)
        ship_from = seller_info_parsed["ship_from"]
        sold_by = seller_info_parsed["sold_by"]
        fulfilled_by = seller_info_parsed["fulfilled_by"]
        seller_id = seller_info_parsed["seller_id"]
        if (ship_from and ship_from.lower().strip().startswith("amazon")) or (
                fulfilled_by and 'amazon' in fulfilled_by.lower()):
            if sold_by and not sold_by.lower().strip().startswith("amazon"):
                return 2, sold_by, seller_id  # FBA
            elif sold_by and sold_by.lower().strip().startswith("amazon"):
                return 1, sold_by, seller_id  # Amazon
        elif (ship_from or fulfilled_by) and sold_by:
            return 3, sold_by, seller_id  # FBM
        return 4, sold_by, seller_id  # Other


def udf_parse_amazon_orders(asin_amazon_orders_str):
    """
    :param asin_amazon_orders_str: 示例: '50+ bought in past month'
    解析asin详情页面的月销字段, 适配usukde3个站点
    """
    pattern = "(\d+[k]{0,})\+"
    results_list = re.findall(pattern, str(asin_amazon_orders_str).lower())
    if len(results_list) == 1:
        result = int(results_list[0].replace("k", "000").replace(" ", ""))
    else:
        result = None
    return result


# 解析ABA词的语种
def udf_detect_phrase_reg(lang_word_map):
    def detect_phrase(phrase: str):
        # + 号替换为空格用于分词
        phrase = re.sub(r'(\+)', ' ', phrase).strip()
        # 分词
        from nltk.tokenize import word_tokenize
        word_list = list(filter(lambda x: len(x) >= 2, word_tokenize(phrase, "english")))
        tmp_map = {
            "en": {"frequency": 0, "word": []},
            "fr": {"frequency": 0, "word": []},
            "es": {"frequency": 0, "word": []},
            "de": {"frequency": 0, "word": []},
        }
        for word in word_list:
            lang_rank_map: dict = lang_word_map.get(word)
            if lang_rank_map is not None:
                for lang in lang_rank_map.keys():
                    frequency = lang_rank_map[lang]
                    tmp_map[lang]["frequency"] = tmp_map[lang]["frequency"] + frequency
                    tmp_map[lang]["word"].append(word)
            pass
        # 先根据word名称个数倒序后根据分数
        lang, hint_word_map = sorted(tmp_map.items(), key=lambda it: (len(it[1]['word']), it[1]['frequency']), reverse=True)[0]
        if hint_word_map['frequency'] == 0:
            return {"lang": None, "hint_word": None}
        else:
            # 如果en的频率大于0,优先设为en
            if tmp_map['en']['frequency'] > 0:
                lang = 'en'
                hint_word_map = tmp_map['en']
            hint_word_list = hint_word_map['word']
            hint_word = " ".join(hint_word_list)
            if len(hint_word) <= 2:
                return {"lang": None, "hint_word": None}
            return {"lang": lang, "hint_word": hint_word}
        pass
    return F.udf(detect_phrase, MapType(StringType(), StringType()))