1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
import json
import os
import sys
sys.path.append(os.path.dirname(sys.path[0]))
from utils.common_util import CommonUtil, DateTypes
from utils.hdfs_utils import HdfsUtils
from utils.spark_util import SparkUtil
from pyspark.sql import functions as F, DataFrame
from pyspark.sql.types import MapType, StringType, DecimalType, IntegerType, DoubleType, ArrayType
from yswg_utils.common_udf import parse_asin_volume_str, sort_volume, get_Fba_Fee
"""
搜索词 计算=>平均长宽高 => 计算基本利润率相关数据
依赖 dwd_st_asin_measure 表 dim_asin_detail 表
输出为 Dwd_st_volume_fba
支持所有站点 日期类型
# 更新利润率
update us_aba_last_30_day
set gross_profit_fee_sea = tb_2.gross_profit_fee_sea,
gross_profit_fee_air=tb_2.gross_profit_fee_air
from us_aba_profit_gross_last30day tb_2
where tb_2.search_term_id = id
"""
class DwdStVolumeFba(object):
def __init__(self, site_name, date_type, date_info):
self.site_name = site_name
self.date_info = date_info
self.date_type = date_type
app_name = f"{self.__class__.__name__}:{site_name}:{date_type}:{date_info}"
self.spark = SparkUtil.get_spark_session(app_name)
# # 注册本地静态方法 udf 返回新函数
# self.udf_parse_volume_reg = F.udf(self.udf_parse_volume, MapType(StringType(), DecimalType(10, 4)))
self.spark.udf.register("udf_sort_volume", sort_volume, ArrayType(DoubleType()))
self.udf_transfer_weight_reg = F.udf(self.udf_transfer_weight, DoubleType())
self.udf_transfer_volume_val_reg = F.udf(self.udf_transfer_volume_val, DoubleType())
self.udf_calc_avg_reg = F.udf(self.udf_calc_avg, DecimalType(10, 4))
self.udf_calc_profit_reg = F.udf(self.udf_calc_profit, MapType(StringType(), StringType()))
self.hive_tb = "dwd_st_volume_fba"
@staticmethod
def udf_transfer_weight(weight, weight_type):
"""
重量及重量类型转为 克
:param asin_volume:
:return:
"""
if weight is None:
return None
if weight_type == 'pounds':
rate = 453.59237
elif weight_type == 'grams':
rate = 1
pass
else:
raise Exception("weight_type 异常请检查!!")
return round(weight * rate, 4)
@staticmethod
def udf_transfer_volume_val(val, asin_volume_type):
"""
长度单位转为 cm
:param asin_volume:
:return:
"""
if val is None:
return None
if asin_volume_type == 'inches':
rate = 2.54
elif asin_volume_type == 'cm':
rate = 1
elif asin_volume_type == 'mm':
rate = 10
elif asin_volume_type == 'm':
rate = 100
else:
rate = 1
return round(val * rate, 4)
@staticmethod
def udf_calc_avg(
val1_col,
val2_col,
val3_col,
val1_count,
val2_count,
val3_count
):
val1_col = val1_col or 0
val2_col = val2_col or 0
val3_col = val3_col or 0
val1_count = val1_count or 0
val2_count = val2_count or 0
val3_count = val3_count or 0
arr = [(val1_count, val1_col), (val2_count, val2_col), (val3_count, val3_col)]
# 从小到大排序
arr.sort(key=lambda it: it[0], reverse=False)
val1, count1 = arr[0]
val2, count2 = arr[1]
val3, count3 = arr[2]
if (count1 == count2 and count2 == count3):
return round((val1 + val2 + val3) / 3, 2)
if (count2 / count3 >= 0.3):
return round((val2 + val3) / 2, 2)
else:
return val3
@staticmethod
def get_fba_calc_dict(df_profit_config: DataFrame):
"""
获取配置表
:param df_profit_config:
:return:
"""
calc_profit_list_df = df_profit_config.where("calc_type is not null") \
.groupby("category_first_id").agg(
F.first(F.col("calc_type")).alias("calc_type"),
F.first(F.col("fba_config_json")).alias("fba_config_json"),
)
calc_profit_dict = {}
for row in calc_profit_list_df.collect():
tmp = row.asDict()
calc_profit_dict[str(tmp['category_first_id'])] = {
"calc_type": row['calc_type'],
"fba_config_json": json.loads(row['fba_config_json'])
}
return calc_profit_dict
@staticmethod
def udf_calc_fba_reg(config_dict: dict):
"""
根据配置表计算fba费用
:param config_dict:
:return:
"""
def udf_calc_fba(categoy_first_id: str, price):
if price is None:
return None
config_row = config_dict.get(str(categoy_first_id))
if config_row is None:
# 默认佣金比例是0.15
return price * 0.15
else:
calc_type = config_row['calc_type']
calc_json = config_row['fba_config_json']
if calc_type == '价格分段':
min = calc_json['min']
rate_1 = calc_json['rate_1']
rate_2 = calc_json['rate_2']
break_val = calc_json['break_val']
if price <= break_val:
return max(min, price * rate_1)
else:
return price * rate_2
elif calc_type == '佣金分段':
min = calc_json['min']
rate_1 = calc_json['rate_1']
rate_2 = calc_json['rate_2']
break_val = calc_json['break_val']
if price * rate_1 <= break_val:
return max(min, price * rate_1)
else:
return price * rate_2
elif calc_type == '最小限制':
rate = calc_json['rate']
min = calc_json['min']
return max(min, price * rate)
pass
elif calc_type == '固定比率':
rate = calc_json['rate']
return price * rate
pass
return F.udf(udf_calc_fba, DoubleType())
@staticmethod
def udf_calc_profit(long, width, high, weight, tmp_cost_all_sea, price):
longVal_before = long or 0
width_before = width or 0
high_before = high or 0
weight_before = weight or 0
tmpCost = tmp_cost_all_sea or 0
price_val = price or 0
fee_type_before, fba_fee_before = get_Fba_Fee(longVal_before, width_before, high_before, weight_before)
cost_sum = tmpCost + fba_fee_before
count = 0
long_result = longVal_before
width_result = width_before
high_result = high_before
fee_type_result = fee_type_before
fba_fee_result = fba_fee_before
breakFlag = False
val_43 = 43
if cost_sum > price_val:
while (long_result >= val_43 and count < 4):
tmpVal1 = long_result / 2
tmpVal2 = high_result * 2
breakFlag = tmpVal1 <= tmpVal2
tmp_list = [tmpVal1, width_result, tmpVal2]
tmp_list.sort(reverse=True)
long_result = tmp_list[0]
width_result = tmp_list[1]
high_result = tmp_list[2]
count = count + 1
fee_type_result, fba_fee_result = get_Fba_Fee(long_result, width_result, high_result, weight_before)
if breakFlag:
break
if breakFlag or (count == 4 and long_result > val_43):
long_result = longVal_before
width_result = width_before
high_result = high_before
fee_type_result = fee_type_before
fba_fee_result = fba_fee_before
return {
"long": long_result,
"width": width_result,
"high": high_result,
"fee_type": fee_type_result,
"fba_fee": fba_fee_result,
"long_before": longVal_before,
"width_before": width_before,
"high_before": high_before
}
def get_repartition_num(self):
"""
根据 date_type 设置文件块数
:return:
"""
if self.date_type == DateTypes.day.name:
return 1
if self.date_type == DateTypes.week.name:
return 2
if self.date_type == DateTypes.month.name:
return 2
if self.date_type == DateTypes.last30day.name:
return 2
return 10
def run(self):
# 获取 利润率相关配置表
profit_config_sql = f"""
select category_id,
category_first_id,
cost,
avg_cost,
calc_type,
fba_config_json,
adv,
return_ratio / 100 as return_ratio
from dim_profit_config
where site_name = 'us'
"""
df_profit_config = self.spark.sql(profit_config_sql).cache()
calc_profit_dict = self.get_fba_calc_dict(df_profit_config)
# 获取搜索词相关信息
sql = f"""
select dsam.search_term,
osk.st_key as search_term_id,
dsam.asin,
sorted_volume[0] as long,
sorted_volume[1] as width,
sorted_volume[2] as height,
asin_volume_type,
asin_weight,
asin_weight_type,
st_bsr_cate_1_id_new as category_first_id,
st_bsr_cate_current_id_new as category_id,
asin_price
from (
select search_term,
asin
from dwd_st_asin_measure
where date_type = '{CommonUtil.get_rel_date_type('dwd_st_asin_measure', self.date_type)}'
and date_info = '{self.date_info}'
and site_name = '{self.site_name}'
) dsam
left join
(
select search_term,
st_bsr_cate_1_id_new,
st_bsr_cate_current_id_new
from dim_st_detail
where date_type = '{CommonUtil.get_rel_date_type('dim_st_detail', self.date_type)}'
and date_info = '{self.date_info}'
and site_name = '{self.site_name}'
) dsd on dsd.search_term = dsam.search_term
left join
-- 使用 事实表的四分位价格
(
select search_term,
round(st_price_avg, 6 ) as asin_price
from dwd_st_measure
where date_type = '{CommonUtil.get_rel_date_type('dwd_st_measure', self.date_type)}'
and date_info = '{self.date_info}'
and site_name = '{self.site_name}'
) dad on dad.search_term = dsam.search_term
left join
(
select asin,
asin_weight,
asin_weight_type,
udf_sort_volume(asin_length,asin_width,asin_height) sorted_volume,
asin_volume_type
from dim_asin_stable_info
where site_name = '{self.site_name}'
) dssi on dssi.asin = dsam.asin
inner join
(
select search_term,
st_key
from ods_st_key
where site_name = '{self.site_name}'
) osk on osk.search_term = dsam.search_term
"""
print("======================查询sql如下======================")
print(sql)
df_all = self.spark.sql(sql)
# 长宽高转换
df_all = df_all.withColumn("long", self.udf_transfer_volume_val_reg(F.col("long"), F.col("asin_volume_type")))
df_all = df_all.withColumn("width", self.udf_transfer_volume_val_reg(F.col("width"), F.col("asin_volume_type")))
df_all = df_all.withColumn("height", self.udf_transfer_volume_val_reg(F.col("height"), F.col("asin_volume_type")))
df_all = df_all.withColumn("weight", self.udf_transfer_weight_reg(F.col("asin_weight"), F.col("asin_weight_type")))
st_volume_info = df_all.groupBy("search_term_id") \
.agg(
F.first("search_term").alias("search_term"),
F.first("category_first_id").alias("category_first_id"),
F.first("category_id").alias("category_id"),
F.avg("asin_price").alias("price"),
F.avg(F.col('weight')).alias("weight"),
F.avg(F.col('long')).alias("long"),
F.avg(F.col('width')).alias("width"),
F.avg(F.col('height')).alias("high"),
)
# 平均成本比例
def_cost_rate = df_profit_config.select(F.avg("cost").cast(DecimalType(10, 3)).alias("cost_rate")).first()[0]
# 平均广告费
def_adv = df_profit_config.select(F.avg("adv").cast(DecimalType(10, 3)).alias("adv")).first()[0]
# 平均退款率
def_return_ratio = df_profit_config.select(F.avg("return_ratio").cast(DecimalType(10, 3)).alias("return_ratio")).first()[0]
# 头程空运 运费比例
freight_air_rate = 8.55
# 头程海运 运费比例
freight_sea_rate = 2.06
# 用一级分类进行关联的数据
df_category_first_id_config = df_profit_config.groupby("category_first_id").agg(
F.max("adv").alias("adv"),
F.max("return_ratio").alias("return_ratio"),
)
# 用 categoy_id 进行配置计算的数据
df_category_id_config = df_profit_config.groupby("category_id").agg(
F.max("cost").alias("cost_rate")
)
df_save = st_volume_info \
.join(df_category_first_id_config, ['category_first_id'], "left") \
.join(df_category_id_config, ['category_id'], "left")
df_save = df_save.select(
st_volume_info["search_term"],
st_volume_info["search_term_id"],
st_volume_info["category_first_id"],
st_volume_info["category_id"],
st_volume_info["price"],
st_volume_info["long"],
st_volume_info["width"],
st_volume_info["high"],
st_volume_info["weight"],
df_category_first_id_config["return_ratio"],
df_category_first_id_config["adv"],
df_category_id_config['cost_rate']
)
df_save = df_save.fillna({
# 无分类 填充退款率 佣金
"return_ratio": float(def_return_ratio),
"cost_rate": float(def_cost_rate),
"adv": float(def_adv),
}).cache()
# 计算公式
df_save = df_save.withColumn("referral_fee",
F.round(self.udf_calc_fba_reg(calc_profit_dict)(F.col("category_first_id"), F.col("price")), 4))
# 头程 海运
df_save = df_save.withColumn("ocean_freight", F.expr(f"weight * {freight_sea_rate} /1000"))
# 头程 空运
df_save = df_save.withColumn("air_delivery_fee", F.expr(f"weight * {freight_air_rate} /1000"))
# 运营费固定 平均售价 * 5%
df_save = df_save.withColumn("operating_costs", F.expr(f"price * 0.05"))
# 成本
df_save = df_save.withColumn("costs", F.expr(f" price * cost_rate "))
# 广告占比 adv
df_save = df_save.withColumn("advertise", F.expr(f" price * adv "))
# 退款率 * 价格 即为退款额
df_save = df_save.withColumn("return_ratio", F.expr(f" price * return_ratio "))
# 除了fba之外的所有的费用
df_save = df_save.withColumn("tmp_cost_all_sea",
F.expr("ocean_freight + referral_fee + return_ratio + costs + advertise + operating_costs"))
# 计算利润率
df_save = df_save.withColumn("tmp_row", self.udf_calc_profit_reg(
F.col("long"),
F.col("width"),
F.col("high"),
F.col("weight"),
F.col("tmp_cost_all_sea"),
F.col("price"),
))
df_save = df_save.withColumn("fba_fee", F.col("tmp_row").getField("fba_fee"))
df_save = df_save.withColumn("gross_profit_fee_sea",
F.expr(
"(price-(ocean_freight +referral_fee+return_ratio +costs+advertise+operating_costs + fba_fee))/price")
.cast(DecimalType(10, 3)))
df_save = df_save.withColumn("gross_profit_fee_air",
F.expr(
"(price-(air_delivery_fee +referral_fee+return_ratio +costs+advertise+operating_costs + fba_fee))/price")
.cast(DecimalType(10, 3)))
df_save = df_save.select(
F.col("search_term"),
F.col("search_term_id"),
st_volume_info["category_first_id"],
st_volume_info["category_id"],
F.col("weight").cast(DecimalType(10, 3)),
F.col("price").cast(DecimalType(10, 3)),
F.col("referral_fee").cast(DecimalType(10, 3)),
# 长宽高之前
F.col("tmp_row").getField("long_before").cast(DecimalType(10, 3)).alias("long_before"),
F.col("tmp_row").getField("width_before").cast(DecimalType(10, 3)).alias("width_before"),
F.col("tmp_row").getField("high_before").cast(DecimalType(10, 3)).alias("high_before"),
# 计算后
F.col("tmp_row").getField("long").cast(DecimalType(10, 3)).alias("longs"),
F.col("tmp_row").getField("width").cast(DecimalType(10, 3)).alias("width"),
F.col("tmp_row").getField("high").cast(DecimalType(10, 3)).alias("high"),
F.col("tmp_row").getField("fba_fee").cast(DecimalType(10, 3)).alias("fba_fee"),
F.col("tmp_row").getField("fee_type").cast(IntegerType()).alias("fee_type"),
F.col("return_ratio"),
F.col("ocean_freight"),
F.col("air_delivery_fee"),
F.col("operating_costs"),
F.col("costs"),
F.col("advertise"),
F.col("gross_profit_fee_sea"),
F.col("gross_profit_fee_air"),
F.col("cost_rate"),
F.lit(self.site_name).alias("site_name"),
F.lit(self.date_type).alias("date_type"),
F.lit(self.date_info).alias("date_info")
).where("weight < 10000000")
# 分区数量调整
df_save = df_save.repartition(self.get_repartition_num())
partition_dict = {
"site_name": self.site_name,
"date_type": self.date_type,
"date_info": self.date_info,
}
df_save = CommonUtil.format_df_with_template(self.spark, df_save, self.hive_tb, True)
hdfs_path = CommonUtil.build_hdfs_path(self.hive_tb, partition_dict)
HdfsUtils.delete_hdfs_file(hdfs_path)
partition_by = list(partition_dict.keys())
print(f"当前存储的表名为::self.hive_tb,分区为{partition_by}", )
df_save.write.saveAsTable(name=self.hive_tb, format='hive', mode='append', partitionBy=partition_by)
print("success")
if __name__ == '__main__':
site_name = CommonUtil.get_sys_arg(1, None)
date_type = CommonUtil.get_sys_arg(2, None)
date_info = CommonUtil.get_sys_arg(3, None)
obj = DwdStVolumeFba(site_name, date_type, date_info)
obj.run()