1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import os
import sys
sys.path.append(os.path.dirname(sys.path[0]))
from utils.hdfs_utils import HdfsUtils
from utils.common_util import CommonUtil
from utils.spark_util import SparkUtil
from pyspark.sql import functions as F
from pyspark.sql.window import Window
class DwtSTBaseReport(object):
def __init__(self, site_name, date_type, date_info):
self.site_name = site_name
self.date_type = date_type
self.date_info = date_info
self.hive_tb = "dwt_st_base_report"
app_name = f"{self.hive_tb}:{site_name} {date_type} {date_info}"
self.spark = SparkUtil.get_spark_session(app_name)
self.partitions_num = CommonUtil.reset_partitions(site_name, 1)
def run(self):
# 读ods_rank_search_rate_repeat表,获取排名+搜索量对应关系
if self.date_info <= '2022-08':
params = "date_info = '2022-08'"
else:
params = f"date_info = '{self.date_info}'"
sql1 = f"""
select
rank as st_rank,
search_num as st_volume,
search_sum as st_orders
from ods_rank_search_rate_repeat
where site_name = '{self.site_name}'
and date_type = 'month'
and {params};
"""
df_rank_sv = self.spark.sql(sql1).repartition(40, 'st_rank').cache()
print("排名+搜索量对应关系:")
df_rank_sv.show(10, False)
if df_rank_sv.count() == 0:
sql1 = f"""
select
rank as st_rank,
search_num as st_volume,
search_sum as st_orders,
date_info
from ods_rank_search_rate_repeat
where site_name = '{self.site_name}';
"""
df_rank_sv = self.spark.sql(sql1)
window = Window.partitionBy(["st_rank"]).orderBy(df_rank_sv.date_info.desc())
df_rank_sv = df_rank_sv.withColumn("rk", F.row_number().over(window=window))\
.filter("rk = 1")\
.drop("rk", "date_info")\
.repartition(40, 'st_rank').cache()
print("排名+搜索量对应关系:")
df_rank_sv.show(10, False)
# 搜索词主表
sql2 = f"""
select
id as st_key,
search_term
from dwt_aba_st_analytics
where site_name = '{self.site_name}'
and date_type = '{self.date_type}'
and date_info = '{self.date_info}';
"""
df_st_base = self.spark.sql(sql2).repartition(40, 'search_term').cache()
print("搜索词主表:")
df_st_base.show(10, False)
# 读ods_brand_analytics表,获取报告中的搜索词+排名
sql3 = f"""
select
search_term,
rank as st_rank
from ods_brand_analytics
where site_name = '{self.site_name}'
and date_type = '{self.date_type}'
and date_info = '{self.date_info}';
"""
df_st_rank = self.spark.sql(sql3).repartition(40, 'search_term').cache()
print("搜索词+排名对应关系,月:")
df_st_rank.show(10, False)
df_save = df_st_base \
.join(df_st_rank, 'search_term', 'inner') \
.repartition(40, 'st_rank') \
.join(df_rank_sv, 'st_rank', 'left') \
.withColumn('created_time', F.date_format(F.current_timestamp(), 'yyyy-MM-dd HH:mm:SS')) \
.withColumn('updated_time', F.date_format(F.current_timestamp(), 'yyyy-MM-dd HH:mm:SS')) \
.withColumn('years', F.lit(int(self.date_info.split("-")[0]))) \
.withColumn('site_name', F.lit(self.site_name)) \
.withColumn('date_type', F.lit(self.date_type)) \
.withColumn('date_info', F.lit(self.date_info))
hdfs_path = f"/home/{SparkUtil.DEF_USE_DB}/dwt/{self.hive_tb}/site_name={self.site_name}/date_type={self.date_type}/date_info={self.date_info}"
print(f"清除hdfs目录中数据:{hdfs_path}")
HdfsUtils.delete_hdfs_file(hdfs_path)
df_save = df_save.repartition(self.partitions_num)
partition_by = ["site_name", "date_type", "date_info"]
print(f"当前存储的表名为:{self.hive_tb},分区为{partition_by}", )
df_save.write.saveAsTable(name=self.hive_tb, format='hive', mode='append', partitionBy=partition_by)
print("success")
# 计算周维度的趋势图数据
# 读日期字典表,获取date_info对应的week_list
sql = f"""
select year_week from dim_date_20_to_30 where week_day = 1 and year_month = '{self.date_info}';
"""
df_week = self.spark.sql(sql)
week_list = sorted([row['year_week'] for row in df_week.collect()])
for year_week in week_list:
sql = f"""
select
search_term,
rank as st_rank
from ods_brand_analytics
where site_name = '{self.site_name}'
and date_type = 'week'
and date_info = '{year_week}'
and rank <= 1500000;
"""
df_st_rank_week = self.spark.sql(sql).repartition(40, 'search_term').cache()
print(f"搜索词+排名对应关系,{year_week}周:")
df_st_rank_week.show(10, False)
df_save = df_st_base\
.join(df_st_rank_week, 'search_term', 'inner')\
.repartition(40, 'st_rank')\
.join(df_rank_sv, 'st_rank', 'left')\
.withColumn('created_time', F.date_format(F.current_timestamp(), 'yyyy-MM-dd HH:mm:SS'))\
.withColumn('updated_time', F.date_format(F.current_timestamp(), 'yyyy-MM-dd HH:mm:SS'))\
.withColumn('years', F.lit(int(year_week.split("-")[0])))\
.withColumn('site_name', F.lit(self.site_name))\
.withColumn('date_type', F.lit('week'))\
.withColumn('date_info', F.lit(year_week))
hdfs_path = f"/home/{SparkUtil.DEF_USE_DB}/dwt/{self.hive_tb}/site_name={self.site_name}/date_type=week/date_info={year_week}"
print(f"清除hdfs目录中数据:{hdfs_path}")
HdfsUtils.delete_hdfs_file(hdfs_path)
df_save = df_save.repartition(self.partitions_num)
partition_by = ["site_name", "date_type", "date_info"]
print(f"当前存储的表名为:{self.hive_tb},分区为{partition_by}", )
df_save.write.saveAsTable(name=self.hive_tb, format='hive', mode='append', partitionBy=partition_by)
print("success")
if __name__ == '__main__':
site_name = CommonUtil.get_sys_arg(1, None)
date_type = CommonUtil.get_sys_arg(2, None)
date_info = CommonUtil.get_sys_arg(3, None)
obj = DwtSTBaseReport(site_name, date_type, date_info)
obj.run()