1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
import os
import sys
sys.path.append(os.path.dirname(sys.path[0]))
from utils.templates import Templates
from utils.common_util import CommonUtil
from datetime import datetime, timedelta
from pyspark.sql import functions as F
from pyspark.sql.types import StringType
from utils.db_util import DBUtil
class DwtUserStoreCollectionsInfo(Templates):
def __init__(self, site_name, date_type, date_info, run_type, seller_id_tuple):
super().__init__()
self.site_name = site_name
self.date_type = date_type
self.date_info = date_info
self.run_type = run_type
self.seller_id_tuple = seller_id_tuple
self.db_save = "dwt_user_store_collections_info"
if self.run_type == 'real_time':
self.seller_id_tuple = str(self.seller_id_tuple).split(',')
self.spark = self.create_spark_object(
app_name=f"{self.db_save}:{self.site_name}-{self.date_type}-{self.date_info}")
self.partitions_by = ['site_name', 'date_type', 'date_info']
self.reset_partitions(100)
self.previous_date_info = self.get_previous_date_info()
# df初始化
self.df_store_asin_detail = self.spark.sql("select 1+1;")
self.df_previous_store_asin_detail = self.spark.sql("select 1+1;")
self.df_user_store_collections_info = self.spark.sql("select 1+1;")
# udf注册
self.u_judge_store_label = self.spark.udf.register('u_judge_store_label', self.udf_judge_store_label,
StringType())
@staticmethod
def udf_judge_store_label(high_quantity_num, standard_ao_num, total_num, new_asin_sales_surge_num,
old_asin_sales_surge_num):
if total_num > 0 and old_asin_sales_surge_num > 0:
if high_quantity_num / total_num >= 0.8 and standard_ao_num / total_num >= 0.5 and new_asin_sales_surge_num / old_asin_sales_surge_num >= 0.5:
return 'A'
elif high_quantity_num / total_num >= 0.5 and standard_ao_num / total_num >= 0.4 and new_asin_sales_surge_num / old_asin_sales_surge_num >= 0.4:
return 'B'
elif high_quantity_num / total_num >= 0.3 and standard_ao_num / total_num >= 0.3 and new_asin_sales_surge_num / old_asin_sales_surge_num >= 0.3:
return 'C'
elif high_quantity_num / total_num >= 0.1 and standard_ao_num / total_num >= 0.2 and new_asin_sales_surge_num / old_asin_sales_surge_num >= 0.2:
return 'D'
else:
return 'E'
else:
return 'E'
def get_previous_date_info(self):
self.df_date = self.spark.sql(f"select * from dim_date_20_to_30 ;")
df = self.df_date.toPandas()
df_loc = df.loc[df.date == f'{self.date_info}']
current_date_id = list(df_loc.id)[0]
previous_date_id = int(current_date_id) - 1
df_loc = df.loc[df.id == previous_date_id]
previous_date = list(df_loc.date)[0]
return previous_date
def read_data(self):
print("1. 读取店铺收藏下asin详情")
if self.run_type == 'real_time':
hdfs_path = "/home/big_data_selection/tmp/user_collect_store_asin_detail_tmp/*.parquet"
self.df_store_asin_detail = self.spark.read.parquet(hdfs_path)
else:
sql = f"""
select seller_id, store_name, store_location, store_crawl_time, store_asin_total_num, asin, asin_price,
asin_rating, asin_total_comments, asin_ao_val, is_standard_ao, asin_bsr_rank, asin_bsr_orders,
category_first_id, category_first_name, category_id, category_name, parent_asin, asin_type, is_raise_asin,
is_popular_asin, is_high_quantity_asin, is_sales_surge_asin
from dws_user_collect_store_asin_detail where site_name='{self.site_name}' and date_type='{self.date_type}'
and date_info='{self.date_info}'
"""
print("sql=", sql)
self.df_store_asin_detail = self.spark.sql(sqlQuery=sql).cache()
print("2. 读取店铺收藏上个维度的asin详情")
if self.run_type == 'real_time':
sql1 = f"""
select seller_id, asin, asin_price as previous_asin_price, asin_bsr_rank as previous_asin_bsr_rank
from dws_user_collect_store_asin_detail where site_name='{self.site_name}' and date_type='{self.date_type}'
and date_info='{self.previous_date_info}' and seller_id
"""
query_store = ', '.join([f"'{value}'" for value in self.seller_id_tuple])
sql2 = f" in ({query_store})"
sql = sql1 + sql2
else:
sql = f"""
select seller_id, asin, asin_price as previous_asin_price, asin_bsr_rank as previous_asin_bsr_rank
from dws_user_collect_store_asin_detail where site_name='{self.site_name}' and date_type='{self.date_type}'
and date_info='{self.previous_date_info}'
"""
print("sql=", sql)
self.df_previous_store_asin_detail = self.spark.sql(sqlQuery=sql).cache()
def handle_asin_change(self):
self.df_store_asin_detail = self.df_store_asin_detail.join(
self.df_previous_store_asin_detail, on=['seller_id', 'asin'], how='left'
)
# 判断asin价格是否上涨
self.df_store_asin_detail = self.df_store_asin_detail.withColumn(
"is_asin_price_raise",
F.when(F.col("asin_price") - F.col("previous_asin_price") > 0, F.lit(1)).otherwise(F.lit(0))
)
# 判断asin价格是否下跌
self.df_store_asin_detail = self.df_store_asin_detail.withColumn(
"is_asin_price_decline",
F.when(F.col("asin_price") - F.col("previous_asin_price") < 0, F.lit(1)).otherwise(F.lit(0))
)
# 判断asin的bsr排名是否上升超过一倍
self.df_store_asin_detail = self.df_store_asin_detail.withColumn(
"is_asin_rank_raise",
F.when((F.col("previous_asin_bsr_rank").isNotNull()) & (
(F.col("asin_bsr_rank") - F.col("previous_asin_bsr_rank")) / F.col("previous_asin_bsr_rank")
<= -0.5), F.lit(1)).otherwise(F.lit(0))
)
# 判断asin的bsr排名是否下降超过一倍
self.df_store_asin_detail = self.df_store_asin_detail.withColumn(
"is_asin_rank_decline",
F.when((F.col("previous_asin_bsr_rank").isNotNull()) & (
(F.col("asin_bsr_rank") - F.col("previous_asin_bsr_rank")) / F.col("previous_asin_bsr_rank")
>= 0.5), F.lit(1)).otherwise(F.lit(0))
)
self.df_store_asin_detail = self.df_store_asin_detail.drop("previous_asin_price", "previous_asin_bsr_rank")
def handle_data_group(self):
# 获取多数量占比
df_variant_ratio = self.df_store_asin_detail.select("seller_id", "asin", "parent_asin").withColumn(
"parent_asin", F.when(F.col("parent_asin").isNull(), F.col("asin")).otherwise(F.col("parent_asin")))
df_variant_ratio = df_variant_ratio.groupby(['seller_id', 'parent_asin']).agg(
F.count('asin').alias("asin_son_count")
)
df_variant_ratio = df_variant_ratio.withColumn("is_variant_flag", F.when(F.col("asin_son_count") > 1, F.lit(1)))
df_variant_ratio = df_variant_ratio.groupby(['seller_id']).agg(
F.sum("is_variant_flag").alias("store_more_variant_num"),
F.count("parent_asin").alias("store_variant_asin_total")
)
df_variant_ratio = df_variant_ratio.withColumn(
"store_page20_variant_rate",
F.round(F.col("store_more_variant_num") / F.col("store_variant_asin_total"), 4))
df_variant_ratio = df_variant_ratio.drop("store_more_variant_num", "store_variant_asin_total")
self.df_user_store_collections_info = self.df_store_asin_detail.groupby(['seller_id']).agg(
F.first("store_name").alias("store_name"),
F.first("store_asin_total_num").alias("store_asin_total_num"),
F.count("asin").alias("store_page20_asin_total_num"),
F.count(F.when(F.col("asin_type") == 1, True)).alias("store_page20_new_asin_total_num"),
F.count(F.when(F.col("asin_type") == 2, True)).alias("store_page20_old_asin_total_num"),
F.round(F.avg("asin_price"), 4).alias("store_page20_asin_avg_price"),
F.round(F.avg("asin_rating"), 4).alias("store_page20_asin_avg_rating"),
F.round(F.avg("asin_total_comments"), 4).alias("store_page20_asin_avg_comments"),
F.count(F.when(F.col("is_raise_asin") == 1, True)).alias("store_page20_raise_asin_num"),
F.count(F.when(F.col("is_popular_asin") == 1, True)).alias("store_page20_popular_asin_num"),
F.count(F.when(F.col("is_high_quantity_asin") == 1, True)).alias("store_page20_high_quantity_asin_num"),
F.count(F.when((F.col("is_sales_surge_asin") == 1) & (F.col("asin_type") == 1), True)).alias(
"store_page20_new_asin_sales_surge_num"),
F.count(F.when((F.col("is_sales_surge_asin") == 1) & (F.col("asin_type") == 2), True)).alias(
"store_page20_old_asin_sales_surge_num"),
F.first("store_location").alias("store_location"),
F.first("store_crawl_time").alias("store_crawl_time"),
F.count(F.when(F.col("is_standard_ao") == 1, True)).alias("standard_ao_num"),
F.sum("is_asin_price_raise").alias("store_page20_price_raise_asin_num"),
F.sum("is_asin_price_decline").alias("store_page20_price_decline_asin_num"),
F.sum("is_asin_rank_raise").alias("store_page20_rank_raise_asin_num"),
F.sum("is_asin_rank_decline").alias("store_page20_rank_decline_asin_num")
)
self.df_user_store_collections_info = self.df_user_store_collections_info.withColumn(
"store_label_type", self.u_judge_store_label(F.col("store_page20_high_quantity_asin_num"),
F.col("standard_ao_num"), F.col("store_page20_asin_total_num"),
F.col("store_page20_new_asin_sales_surge_num"),
F.col("store_page20_old_asin_sales_surge_num"))
)
self.df_user_store_collections_info = self.df_user_store_collections_info.drop("standard_ao_num")
self.df_user_store_collections_info = self.df_user_store_collections_info.withColumn(
"store_page20_new_asin_num_percent",
F.round(F.col("store_page20_new_asin_total_num") / F.col("store_page20_asin_total_num"), 4))
self.df_user_store_collections_info = self.df_user_store_collections_info.withColumn(
"store_page20_old_asin_num_percent",
F.round(F.col("store_page20_old_asin_total_num") / F.col("store_page20_asin_total_num"), 4))
df_store_raise_asin = self.df_store_asin_detail.filter("is_raise_asin=1").groupby(['seller_id']).agg(
F.concat_ws(',', F.collect_list("asin")).alias("store_page20_raise_asin")
)
df_store_popular_asin = self.df_store_asin_detail.filter("is_popular_asin=1").groupby(['seller_id']).agg(
F.concat_ws(',', F.collect_list("asin")).alias("store_page20_popular_asin")
)
df_store_high_quantity_asin = self.df_store_asin_detail.filter("is_high_quantity_asin=1").groupby(
['seller_id']).agg(
F.concat_ws(',', F.collect_list("asin")).alias("store_page20_high_quantity_asin")
)
df_store_new_asin_sales_surge = self.df_store_asin_detail.filter(
(F.col("is_sales_surge_asin") == 1) & (F.col("asin_type") == 1)).groupby(['seller_id']).agg(
F.concat_ws(',', F.collect_list("asin")).alias("store_page20_new_asin_sales_surge")
)
df_store_old_asin_sales_surge = self.df_store_asin_detail.filter(
(F.col("is_sales_surge_asin") == 1) & (F.col("asin_type") == 2)).groupby(['seller_id']).agg(
F.concat_ws(',', F.collect_list("asin")).alias("store_page20_old_asin_sales_surge")
)
df_store_price_raise_asin = self.df_store_asin_detail.filter("is_asin_price_raise=1").groupby(
['seller_id']).agg(
F.concat_ws(',', F.collect_list("asin")).alias("store_page20_price_raise_asin")
)
df_store_price_decline_asin = self.df_store_asin_detail.filter("is_asin_price_decline=1").groupby(
['seller_id']).agg(
F.concat_ws(',', F.collect_list("asin")).alias("store_page20_price_decline_asin")
)
df_store_rank_raise_asin = self.df_store_asin_detail.filter("is_asin_rank_raise=1").groupby(
['seller_id']).agg(
F.concat_ws(',', F.collect_list("asin")).alias("store_page20_rank_raise_asin")
)
df_store_rank_decline_asin = self.df_store_asin_detail.filter("is_asin_rank_decline=1").groupby(
['seller_id']).agg(
F.concat_ws(',', F.collect_list("asin")).alias("store_page20_rank_decline_asin")
)
self.df_user_store_collections_info = self.df_user_store_collections_info.join(
df_variant_ratio, on=['seller_id'], how='left'
).join(
df_store_raise_asin, on=['seller_id'], how='left'
).join(
df_store_popular_asin, on=['seller_id'], how='left'
).join(
df_store_high_quantity_asin, on=['seller_id'], how='left'
).join(
df_store_new_asin_sales_surge, on=['seller_id'], how='left'
).join(
df_store_old_asin_sales_surge, on=['seller_id'], how='left'
).join(
df_store_price_raise_asin, on=['seller_id'], how='left'
).join(
df_store_price_decline_asin, on=['seller_id'], how='left'
).join(
df_store_rank_raise_asin, on=['seller_id'], how='left'
).join(
df_store_rank_decline_asin, on=['seller_id'], how='left'
)
df_store_seller_num_info = self.df_user_store_collections_info.select("seller_id",
"store_page20_asin_total_num")
df_store_asin_category_id_info = self.df_store_asin_detail.filter("category_id is not null").groupby(
['seller_id', 'category_id']).agg(
F.count("asin").alias("asin_count"),
F.first("category_name").alias("en_name")
)
df_store_asin_category_id_info = df_store_asin_category_id_info.join(
df_store_seller_num_info, on=['seller_id'], how='left'
)
df_store_asin_category_id_info = df_store_asin_category_id_info.withColumn(
"asin_percent", F.round(F.col("asin_count") / F.col("store_page20_asin_total_num"), 4))
df_store_category_id_agg = df_store_asin_category_id_info.groupby(['seller_id']).agg(
F.collect_list(
F.struct(F.col("category_id"), F.col("en_name"), F.col("asin_percent"), F.col("asin_count"))).alias(
"category_value")
)
df_store_category_id_agg = df_store_category_id_agg.withColumn("store_current_category_percent",
F.to_json("category_value"))
df_store_category_id_agg = df_store_category_id_agg.drop("category_value")
df_store_asin_category_first_id_info = self.df_store_asin_detail.filter(
"category_first_id is not null").groupby(
['seller_id', 'category_first_id']).agg(
F.count("asin").alias("asin_count"),
F.first("category_first_name").alias("en_name")
)
df_store_asin_category_first_id_info = df_store_asin_category_first_id_info.join(
df_store_seller_num_info, on=['seller_id'], how='left'
)
df_store_asin_category_first_id_info = df_store_asin_category_first_id_info.withColumn(
"asin_percent", F.round(F.col("asin_count") / F.col("store_page20_asin_total_num"), 4))
df_store_category_first_id_agg = df_store_asin_category_first_id_info.groupby(['seller_id']).agg(
F.collect_list(F.struct(F.col("category_first_id"), F.col("en_name"), F.col("asin_percent"),
F.col("asin_count"))).alias(
"category_first_vale")
)
df_store_category_first_id_agg = df_store_category_first_id_agg.withColumn("store_first_category_percent",
F.to_json("category_first_vale"))
df_store_category_first_id_agg = df_store_category_first_id_agg.drop("category_first_vale")
self.df_user_store_collections_info = self.df_user_store_collections_info.join(
df_store_category_id_agg, on=['seller_id'], how='left'
).join(
df_store_category_first_id_agg, on=['seller_id'], how='left'
)
self.df_user_store_collections_info = self.df_user_store_collections_info.withColumn(
"store_new_flag", F.when(F.col("store_page20_new_asin_num_percent") >= 0.5, F.lit(1)).when(
F.col("store_page20_old_asin_num_percent") >= 0.5, F.lit(2)).otherwise(F.lit(0)))
def handle_data_complete(self):
self.df_save = self.df_user_store_collections_info
if self.run_type != 'real_time':
self.df_save = self.df_save.withColumn("created_time",
F.date_format(F.current_timestamp(), 'yyyy-MM-dd HH:mm:SS')). \
withColumn("updated_time", F.date_format(F.current_timestamp(), 'yyyy-MM-dd HH:mm:SS'))
self.df_save = self.df_save.withColumn("site_name", F.lit(self.site_name))
self.df_save = self.df_save.withColumn("date_type", F.lit(self.date_type))
self.df_save = self.df_save.withColumn("date_info", F.lit(self.date_info))
def handle_data(self):
self.handle_asin_change()
self.handle_data_group()
self.handle_data_complete()
def save_data(self):
if self.run_type == 'real_time':
engine = DBUtil.get_db_engine("postgresql", self.site_name)
pg_con_info = DBUtil.get_connection_info("postgresql", self.site_name)
export_tmp_tb = 'user_store_collections_info_tmp'
export_tb = 'user_store_collections_info'
sql = f"""
truncate table {export_tmp_tb};
"""
DBUtil.engine_exec_sql(engine, sql)
connection_properties = {
"user": pg_con_info["username"],
"password": pg_con_info["pwd"],
"driver": "org.postgresql.Driver"
}
pg_url = pg_con_info["url"]
df_save = self.df_save
df_save.write.jdbc(url=pg_url, table=export_tmp_tb, mode="overwrite", properties=connection_properties)
after_sql = f"""
insert into {export_tb}(seller_id, store_asin_total_num, store_page20_asin_total_num,
store_page20_variant_rate, store_page20_new_asin_total_num, store_page20_new_asin_num_percent,
store_page20_old_asin_total_num, store_page20_old_asin_num_percent, store_page20_asin_avg_price,
store_page20_asin_avg_rating, store_page20_asin_avg_comments, store_page20_raise_asin_num,
store_page20_raise_asin, store_page20_popular_asin_num, store_page20_popular_asin,
store_page20_high_quantity_asin_num, store_page20_high_quantity_asin,
store_page20_new_asin_sales_surge_num, store_page20_new_asin_sales_surge,
store_page20_old_asin_sales_surge_num, store_page20_old_asin_sales_surge, store_location,
store_crawl_time, store_first_category_percent, store_current_category_percent, store_label_type,
store_name, store_page20_price_raise_asin_num, store_page20_price_raise_asin,
store_page20_price_decline_asin_num, store_page20_price_decline_asin, store_page20_rank_raise_asin_num,
store_page20_rank_raise_asin, store_page20_rank_decline_asin_num, store_page20_rank_decline_asin, store_new_flag)
select
seller_id, store_asin_total_num, store_page20_asin_total_num,
store_page20_variant_rate, store_page20_new_asin_total_num, store_page20_new_asin_num_percent,
store_page20_old_asin_total_num, store_page20_old_asin_num_percent, store_page20_asin_avg_price,
store_page20_asin_avg_rating, store_page20_asin_avg_comments, store_page20_raise_asin_num,
store_page20_raise_asin, store_page20_popular_asin_num, store_page20_popular_asin,
store_page20_high_quantity_asin_num, store_page20_high_quantity_asin,
store_page20_new_asin_sales_surge_num, store_page20_new_asin_sales_surge,
store_page20_old_asin_sales_surge_num, store_page20_old_asin_sales_surge, store_location,
store_crawl_time, store_first_category_percent, store_current_category_percent, store_label_type,
store_name, store_page20_price_raise_asin_num, store_page20_price_raise_asin,
store_page20_price_decline_asin_num, store_page20_price_decline_asin,
store_page20_rank_raise_asin_num, store_page20_rank_raise_asin, store_page20_rank_decline_asin_num,
store_page20_rank_decline_asin, store_new_flag
from {export_tmp_tb}
ON CONFLICT (seller_id)
DO UPDATE SET
store_asin_total_num = excluded.store_asin_total_num,
store_page20_asin_total_num = excluded.store_page20_asin_total_num,
store_page20_variant_rate = excluded.store_page20_variant_rate,
store_page20_new_asin_total_num = excluded.store_page20_new_asin_total_num,
store_page20_new_asin_num_percent = excluded.store_page20_new_asin_num_percent,
store_page20_old_asin_total_num = excluded.store_page20_old_asin_total_num,
store_page20_old_asin_num_percent = excluded.store_page20_old_asin_num_percent,
store_page20_asin_avg_price = excluded.store_page20_asin_avg_price,
store_page20_asin_avg_rating = excluded.store_page20_asin_avg_rating,
store_page20_asin_avg_comments = excluded.store_page20_asin_avg_comments,
store_page20_raise_asin_num = excluded.store_page20_raise_asin_num,
store_page20_raise_asin = excluded.store_page20_raise_asin,
store_page20_popular_asin_num = excluded.store_page20_popular_asin_num,
store_page20_popular_asin = excluded.store_page20_popular_asin,
store_page20_high_quantity_asin_num = excluded.store_page20_high_quantity_asin_num,
store_page20_high_quantity_asin = excluded.store_page20_high_quantity_asin,
store_page20_new_asin_sales_surge_num = excluded.store_page20_new_asin_sales_surge_num,
store_page20_new_asin_sales_surge = excluded.store_page20_new_asin_sales_surge,
store_page20_old_asin_sales_surge_num = excluded.store_page20_old_asin_sales_surge_num,
store_page20_old_asin_sales_surge = excluded.store_page20_old_asin_sales_surge,
store_location = excluded.store_location,
store_crawl_time = excluded.store_crawl_time,
store_first_category_percent = excluded.store_first_category_percent,
store_current_category_percent = excluded.store_current_category_percent,
store_label_type = excluded.store_label_type,
store_name = excluded.store_name,
store_page20_price_raise_asin_num = excluded.store_page20_price_raise_asin_num,
store_page20_price_raise_asin = excluded.store_page20_price_raise_asin,
store_page20_price_decline_asin_num = excluded.store_page20_price_decline_asin_num,
store_page20_price_decline_asin = excluded.store_page20_price_decline_asin,
store_page20_rank_raise_asin_num = excluded.store_page20_rank_raise_asin_num,
store_page20_rank_raise_asin = excluded.store_page20_rank_raise_asin,
store_page20_rank_decline_asin_num = excluded.store_page20_rank_decline_asin_num,
store_page20_rank_decline_asin = excluded.store_page20_rank_decline_asin,
store_new_flag = excluded.store_new_flag,
created_time = now(),
updated_time = now();
"""
DBUtil.engine_exec_sql(engine, after_sql)
else:
Templates.save_data(self)
def run(self):
self.read_data()
self.handle_data()
self.save_data()
if __name__ == '__main__':
site_name = CommonUtil.get_sys_arg(1, None)
date_type = CommonUtil.get_sys_arg(2, None)
date_info = CommonUtil.get_sys_arg(3, None) # 参数3:年-周/年-月/年-季/年-月-日, 比如: 2022-1
run_type = sys.argv[4]
seller_id_tuple = sys.argv[5]
assert site_name is not None, "site_name 不能为空!"
assert date_type is not None, "date_type 不能为空!"
assert date_info is not None, "date_info 不能为空!"
obj = DwtUserStoreCollectionsInfo(site_name=site_name, date_type=date_type, date_info=date_info, run_type=run_type,
seller_id_tuple=seller_id_tuple)
obj.run()