dwt_user_store_collections_info.py 25.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
import os
import sys

sys.path.append(os.path.dirname(sys.path[0]))
from utils.templates import Templates
from utils.common_util import CommonUtil
from datetime import datetime, timedelta
from pyspark.sql import functions as F
from pyspark.sql.types import StringType
from utils.db_util import DBUtil


class DwtUserStoreCollectionsInfo(Templates):
    def __init__(self, site_name, date_type, date_info, run_type, seller_id_tuple):
        super().__init__()
        self.site_name = site_name
        self.date_type = date_type
        self.date_info = date_info
        self.run_type = run_type
        self.seller_id_tuple = seller_id_tuple
        self.db_save = "dwt_user_store_collections_info"
        if self.run_type == 'real_time':
            self.seller_id_tuple = str(self.seller_id_tuple).split(',')
        self.spark = self.create_spark_object(
            app_name=f"{self.db_save}:{self.site_name}-{self.date_type}-{self.date_info}")
        self.partitions_by = ['site_name', 'date_type', 'date_info']
        self.reset_partitions(100)
        self.previous_date_info = self.get_previous_date_info()

        # df初始化
        self.df_store_asin_detail = self.spark.sql("select 1+1;")
        self.df_previous_store_asin_detail = self.spark.sql("select 1+1;")
        self.df_user_store_collections_info = self.spark.sql("select 1+1;")

        # udf注册
        self.u_judge_store_label = self.spark.udf.register('u_judge_store_label', self.udf_judge_store_label,
                                                           StringType())

    @staticmethod
    def udf_judge_store_label(high_quantity_num, standard_ao_num, total_num, new_asin_sales_surge_num,
                              old_asin_sales_surge_num):
        if total_num > 0 and old_asin_sales_surge_num > 0:
            if high_quantity_num / total_num >= 0.8 and standard_ao_num / total_num >= 0.5 and new_asin_sales_surge_num / old_asin_sales_surge_num >= 0.5:
                return 'A'
            elif high_quantity_num / total_num >= 0.5 and standard_ao_num / total_num >= 0.4 and new_asin_sales_surge_num / old_asin_sales_surge_num >= 0.4:
                return 'B'
            elif high_quantity_num / total_num >= 0.3 and standard_ao_num / total_num >= 0.3 and new_asin_sales_surge_num / old_asin_sales_surge_num >= 0.3:
                return 'C'
            elif high_quantity_num / total_num >= 0.1 and standard_ao_num / total_num >= 0.2 and new_asin_sales_surge_num / old_asin_sales_surge_num >= 0.2:
                return 'D'
            else:
                return 'E'
        else:
            return 'E'

    def get_previous_date_info(self):
        self.df_date = self.spark.sql(f"select * from dim_date_20_to_30 ;")
        df = self.df_date.toPandas()
        df_loc = df.loc[df.date == f'{self.date_info}']
        current_date_id = list(df_loc.id)[0]
        previous_date_id = int(current_date_id) - 1
        df_loc = df.loc[df.id == previous_date_id]
        previous_date = list(df_loc.date)[0]
        return previous_date

    def read_data(self):
        print("1. 读取店铺收藏下asin详情")
        if self.run_type == 'real_time':
            hdfs_path = "/home/big_data_selection/tmp/user_collect_store_asin_detail_tmp/*.parquet"
            self.df_store_asin_detail = self.spark.read.parquet(hdfs_path)
        else:
            sql = f"""
                select seller_id, store_name, store_location, store_crawl_time, store_asin_total_num, asin, asin_price, 
                asin_rating, asin_total_comments, asin_ao_val, is_standard_ao, asin_bsr_rank, asin_bsr_orders, 
                category_first_id, category_first_name, category_id, category_name, parent_asin, asin_type, is_raise_asin, 
                is_popular_asin, is_high_quantity_asin, is_sales_surge_asin 
                from dws_user_collect_store_asin_detail where site_name='{self.site_name}' and date_type='{self.date_type}'
                and date_info='{self.date_info}'
            """
            print("sql=", sql)
            self.df_store_asin_detail = self.spark.sql(sqlQuery=sql).cache()

        print("2. 读取店铺收藏上个维度的asin详情")
        if self.run_type == 'real_time':
            sql1 = f"""
                select seller_id, asin, asin_price as previous_asin_price, asin_bsr_rank as previous_asin_bsr_rank
            from dws_user_collect_store_asin_detail where site_name='{self.site_name}' and date_type='{self.date_type}'
            and date_info='{self.previous_date_info}' and seller_id
            """
            query_store = ', '.join([f"'{value}'" for value in self.seller_id_tuple])
            sql2 = f" in ({query_store})"
            sql = sql1 + sql2
        else:
            sql = f"""
                select seller_id, asin, asin_price as previous_asin_price, asin_bsr_rank as previous_asin_bsr_rank
                from dws_user_collect_store_asin_detail where site_name='{self.site_name}' and date_type='{self.date_type}'
                and date_info='{self.previous_date_info}'
            """
        print("sql=", sql)
        self.df_previous_store_asin_detail = self.spark.sql(sqlQuery=sql).cache()

    def handle_asin_change(self):
        self.df_store_asin_detail = self.df_store_asin_detail.join(
            self.df_previous_store_asin_detail, on=['seller_id', 'asin'], how='left'
        )
        # 判断asin价格是否上涨
        self.df_store_asin_detail = self.df_store_asin_detail.withColumn(
            "is_asin_price_raise",
            F.when(F.col("asin_price") - F.col("previous_asin_price") > 0, F.lit(1)).otherwise(F.lit(0))
        )
        # 判断asin价格是否下跌
        self.df_store_asin_detail = self.df_store_asin_detail.withColumn(
            "is_asin_price_decline",
            F.when(F.col("asin_price") - F.col("previous_asin_price") < 0, F.lit(1)).otherwise(F.lit(0))
        )
        # 判断asin的bsr排名是否上升超过一倍
        self.df_store_asin_detail = self.df_store_asin_detail.withColumn(
            "is_asin_rank_raise",
            F.when((F.col("previous_asin_bsr_rank").isNotNull()) & (
                    (F.col("asin_bsr_rank") - F.col("previous_asin_bsr_rank")) / F.col("previous_asin_bsr_rank")
                    <= -0.5), F.lit(1)).otherwise(F.lit(0))
        )
        # 判断asin的bsr排名是否下降超过一倍
        self.df_store_asin_detail = self.df_store_asin_detail.withColumn(
            "is_asin_rank_decline",
            F.when((F.col("previous_asin_bsr_rank").isNotNull()) & (
                    (F.col("asin_bsr_rank") - F.col("previous_asin_bsr_rank")) / F.col("previous_asin_bsr_rank")
                    >= 0.5), F.lit(1)).otherwise(F.lit(0))
        )
        self.df_store_asin_detail = self.df_store_asin_detail.drop("previous_asin_price", "previous_asin_bsr_rank")

    def handle_data_group(self):
        # 获取多数量占比
        df_variant_ratio = self.df_store_asin_detail.select("seller_id", "asin", "parent_asin").withColumn(
            "parent_asin", F.when(F.col("parent_asin").isNull(), F.col("asin")).otherwise(F.col("parent_asin")))
        df_variant_ratio = df_variant_ratio.groupby(['seller_id', 'parent_asin']).agg(
            F.count('asin').alias("asin_son_count")
        )
        df_variant_ratio = df_variant_ratio.withColumn("is_variant_flag", F.when(F.col("asin_son_count") > 1, F.lit(1)))

        df_variant_ratio = df_variant_ratio.groupby(['seller_id']).agg(
            F.sum("is_variant_flag").alias("store_more_variant_num"),
            F.count("parent_asin").alias("store_variant_asin_total")
        )
        df_variant_ratio = df_variant_ratio.withColumn(
            "store_page20_variant_rate",
            F.round(F.col("store_more_variant_num") / F.col("store_variant_asin_total"), 4))
        df_variant_ratio = df_variant_ratio.drop("store_more_variant_num", "store_variant_asin_total")

        self.df_user_store_collections_info = self.df_store_asin_detail.groupby(['seller_id']).agg(
            F.first("store_name").alias("store_name"),
            F.first("store_asin_total_num").alias("store_asin_total_num"),
            F.count("asin").alias("store_page20_asin_total_num"),
            F.count(F.when(F.col("asin_type") == 1, True)).alias("store_page20_new_asin_total_num"),
            F.count(F.when(F.col("asin_type") == 2, True)).alias("store_page20_old_asin_total_num"),
            F.round(F.avg("asin_price"), 4).alias("store_page20_asin_avg_price"),
            F.round(F.avg("asin_rating"), 4).alias("store_page20_asin_avg_rating"),
            F.round(F.avg("asin_total_comments"), 4).alias("store_page20_asin_avg_comments"),
            F.count(F.when(F.col("is_raise_asin") == 1, True)).alias("store_page20_raise_asin_num"),
            F.count(F.when(F.col("is_popular_asin") == 1, True)).alias("store_page20_popular_asin_num"),
            F.count(F.when(F.col("is_high_quantity_asin") == 1, True)).alias("store_page20_high_quantity_asin_num"),
            F.count(F.when((F.col("is_sales_surge_asin") == 1) & (F.col("asin_type") == 1), True)).alias(
                "store_page20_new_asin_sales_surge_num"),
            F.count(F.when((F.col("is_sales_surge_asin") == 1) & (F.col("asin_type") == 2), True)).alias(
                "store_page20_old_asin_sales_surge_num"),
            F.first("store_location").alias("store_location"),
            F.first("store_crawl_time").alias("store_crawl_time"),
            F.count(F.when(F.col("is_standard_ao") == 1, True)).alias("standard_ao_num"),
            F.sum("is_asin_price_raise").alias("store_page20_price_raise_asin_num"),
            F.sum("is_asin_price_decline").alias("store_page20_price_decline_asin_num"),
            F.sum("is_asin_rank_raise").alias("store_page20_rank_raise_asin_num"),
            F.sum("is_asin_rank_decline").alias("store_page20_rank_decline_asin_num")
        )
        self.df_user_store_collections_info = self.df_user_store_collections_info.withColumn(
            "store_label_type", self.u_judge_store_label(F.col("store_page20_high_quantity_asin_num"),
                                                         F.col("standard_ao_num"), F.col("store_page20_asin_total_num"),
                                                         F.col("store_page20_new_asin_sales_surge_num"),
                                                         F.col("store_page20_old_asin_sales_surge_num"))
        )
        self.df_user_store_collections_info = self.df_user_store_collections_info.drop("standard_ao_num")
        self.df_user_store_collections_info = self.df_user_store_collections_info.withColumn(
            "store_page20_new_asin_num_percent",
            F.round(F.col("store_page20_new_asin_total_num") / F.col("store_page20_asin_total_num"), 4))
        self.df_user_store_collections_info = self.df_user_store_collections_info.withColumn(
            "store_page20_old_asin_num_percent",
            F.round(F.col("store_page20_old_asin_total_num") / F.col("store_page20_asin_total_num"), 4))
        df_store_raise_asin = self.df_store_asin_detail.filter("is_raise_asin=1").groupby(['seller_id']).agg(
            F.concat_ws(',', F.collect_list("asin")).alias("store_page20_raise_asin")
        )
        df_store_popular_asin = self.df_store_asin_detail.filter("is_popular_asin=1").groupby(['seller_id']).agg(
            F.concat_ws(',', F.collect_list("asin")).alias("store_page20_popular_asin")
        )
        df_store_high_quantity_asin = self.df_store_asin_detail.filter("is_high_quantity_asin=1").groupby(
            ['seller_id']).agg(
            F.concat_ws(',', F.collect_list("asin")).alias("store_page20_high_quantity_asin")
        )
        df_store_new_asin_sales_surge = self.df_store_asin_detail.filter(
            (F.col("is_sales_surge_asin") == 1) & (F.col("asin_type") == 1)).groupby(['seller_id']).agg(
            F.concat_ws(',', F.collect_list("asin")).alias("store_page20_new_asin_sales_surge")
        )
        df_store_old_asin_sales_surge = self.df_store_asin_detail.filter(
            (F.col("is_sales_surge_asin") == 1) & (F.col("asin_type") == 2)).groupby(['seller_id']).agg(
            F.concat_ws(',', F.collect_list("asin")).alias("store_page20_old_asin_sales_surge")
        )
        df_store_price_raise_asin = self.df_store_asin_detail.filter("is_asin_price_raise=1").groupby(
            ['seller_id']).agg(
            F.concat_ws(',', F.collect_list("asin")).alias("store_page20_price_raise_asin")
        )
        df_store_price_decline_asin = self.df_store_asin_detail.filter("is_asin_price_decline=1").groupby(
            ['seller_id']).agg(
            F.concat_ws(',', F.collect_list("asin")).alias("store_page20_price_decline_asin")
        )
        df_store_rank_raise_asin = self.df_store_asin_detail.filter("is_asin_rank_raise=1").groupby(
            ['seller_id']).agg(
            F.concat_ws(',', F.collect_list("asin")).alias("store_page20_rank_raise_asin")
        )
        df_store_rank_decline_asin = self.df_store_asin_detail.filter("is_asin_rank_decline=1").groupby(
            ['seller_id']).agg(
            F.concat_ws(',', F.collect_list("asin")).alias("store_page20_rank_decline_asin")
        )
        self.df_user_store_collections_info = self.df_user_store_collections_info.join(
            df_variant_ratio, on=['seller_id'], how='left'
        ).join(
            df_store_raise_asin, on=['seller_id'], how='left'
        ).join(
            df_store_popular_asin, on=['seller_id'], how='left'
        ).join(
            df_store_high_quantity_asin, on=['seller_id'], how='left'
        ).join(
            df_store_new_asin_sales_surge, on=['seller_id'], how='left'
        ).join(
            df_store_old_asin_sales_surge, on=['seller_id'], how='left'
        ).join(
            df_store_price_raise_asin, on=['seller_id'], how='left'
        ).join(
            df_store_price_decline_asin, on=['seller_id'], how='left'
        ).join(
            df_store_rank_raise_asin, on=['seller_id'], how='left'
        ).join(
            df_store_rank_decline_asin, on=['seller_id'], how='left'
        )
        df_store_seller_num_info = self.df_user_store_collections_info.select("seller_id",
                                                                              "store_page20_asin_total_num")
        df_store_asin_category_id_info = self.df_store_asin_detail.filter("category_id is not null").groupby(
            ['seller_id', 'category_id']).agg(
            F.count("asin").alias("asin_count"),
            F.first("category_name").alias("en_name")
        )
        df_store_asin_category_id_info = df_store_asin_category_id_info.join(
            df_store_seller_num_info, on=['seller_id'], how='left'
        )
        df_store_asin_category_id_info = df_store_asin_category_id_info.withColumn(
            "asin_percent", F.round(F.col("asin_count") / F.col("store_page20_asin_total_num"), 4))
        df_store_category_id_agg = df_store_asin_category_id_info.groupby(['seller_id']).agg(
            F.collect_list(
                F.struct(F.col("category_id"), F.col("en_name"), F.col("asin_percent"), F.col("asin_count"))).alias(
                "category_value")
        )
        df_store_category_id_agg = df_store_category_id_agg.withColumn("store_current_category_percent",
                                                                       F.to_json("category_value"))

        df_store_category_id_agg = df_store_category_id_agg.drop("category_value")
        df_store_asin_category_first_id_info = self.df_store_asin_detail.filter(
            "category_first_id is not null").groupby(
            ['seller_id', 'category_first_id']).agg(
            F.count("asin").alias("asin_count"),
            F.first("category_first_name").alias("en_name")
        )
        df_store_asin_category_first_id_info = df_store_asin_category_first_id_info.join(
            df_store_seller_num_info, on=['seller_id'], how='left'
        )
        df_store_asin_category_first_id_info = df_store_asin_category_first_id_info.withColumn(
            "asin_percent", F.round(F.col("asin_count") / F.col("store_page20_asin_total_num"), 4))
        df_store_category_first_id_agg = df_store_asin_category_first_id_info.groupby(['seller_id']).agg(
            F.collect_list(F.struct(F.col("category_first_id"), F.col("en_name"), F.col("asin_percent"),
                                    F.col("asin_count"))).alias(
                "category_first_vale")
        )
        df_store_category_first_id_agg = df_store_category_first_id_agg.withColumn("store_first_category_percent",
                                                                                   F.to_json("category_first_vale"))
        df_store_category_first_id_agg = df_store_category_first_id_agg.drop("category_first_vale")
        self.df_user_store_collections_info = self.df_user_store_collections_info.join(
            df_store_category_id_agg, on=['seller_id'], how='left'
        ).join(
            df_store_category_first_id_agg, on=['seller_id'], how='left'
        )
        self.df_user_store_collections_info = self.df_user_store_collections_info.withColumn(
            "store_new_flag", F.when(F.col("store_page20_new_asin_num_percent") >= 0.5, F.lit(1)).when(
                F.col("store_page20_old_asin_num_percent") >= 0.5, F.lit(2)).otherwise(F.lit(0)))

    def handle_data_complete(self):
        self.df_save = self.df_user_store_collections_info
        if self.run_type != 'real_time':
            self.df_save = self.df_save.withColumn("created_time",
                                                   F.date_format(F.current_timestamp(), 'yyyy-MM-dd HH:mm:SS')). \
                withColumn("updated_time", F.date_format(F.current_timestamp(), 'yyyy-MM-dd HH:mm:SS'))
            self.df_save = self.df_save.withColumn("site_name", F.lit(self.site_name))
            self.df_save = self.df_save.withColumn("date_type", F.lit(self.date_type))
            self.df_save = self.df_save.withColumn("date_info", F.lit(self.date_info))

    def handle_data(self):
        self.handle_asin_change()
        self.handle_data_group()
        self.handle_data_complete()

    def save_data(self):
        if self.run_type == 'real_time':
            engine = DBUtil.get_db_engine("postgresql", self.site_name)
            pg_con_info = DBUtil.get_connection_info("postgresql", self.site_name)
            export_tmp_tb = 'user_store_collections_info_tmp'
            export_tb = 'user_store_collections_info'
            sql = f"""
                   truncate table {export_tmp_tb};
               """

            DBUtil.engine_exec_sql(engine, sql)
            connection_properties = {
                "user": pg_con_info["username"],
                "password": pg_con_info["pwd"],
                "driver": "org.postgresql.Driver"
            }
            pg_url = pg_con_info["url"]
            df_save = self.df_save
            df_save.write.jdbc(url=pg_url, table=export_tmp_tb, mode="overwrite", properties=connection_properties)
            after_sql = f"""
                insert into {export_tb}(seller_id, store_asin_total_num, store_page20_asin_total_num, 
                store_page20_variant_rate, store_page20_new_asin_total_num, store_page20_new_asin_num_percent, 
                store_page20_old_asin_total_num, store_page20_old_asin_num_percent, store_page20_asin_avg_price, 
                store_page20_asin_avg_rating, store_page20_asin_avg_comments, store_page20_raise_asin_num, 
                store_page20_raise_asin, store_page20_popular_asin_num, store_page20_popular_asin, 
                store_page20_high_quantity_asin_num, store_page20_high_quantity_asin, 
                store_page20_new_asin_sales_surge_num, store_page20_new_asin_sales_surge, 
                store_page20_old_asin_sales_surge_num, store_page20_old_asin_sales_surge, store_location, 
                store_crawl_time, store_first_category_percent, store_current_category_percent, store_label_type, 
                store_name, store_page20_price_raise_asin_num, store_page20_price_raise_asin, 
                store_page20_price_decline_asin_num, store_page20_price_decline_asin, store_page20_rank_raise_asin_num, 
                store_page20_rank_raise_asin, store_page20_rank_decline_asin_num, store_page20_rank_decline_asin, store_new_flag) 
                select 
                    seller_id, store_asin_total_num, store_page20_asin_total_num, 
                    store_page20_variant_rate, store_page20_new_asin_total_num, store_page20_new_asin_num_percent, 
                    store_page20_old_asin_total_num, store_page20_old_asin_num_percent, store_page20_asin_avg_price, 
                    store_page20_asin_avg_rating, store_page20_asin_avg_comments, store_page20_raise_asin_num, 
                    store_page20_raise_asin, store_page20_popular_asin_num, store_page20_popular_asin, 
                    store_page20_high_quantity_asin_num, store_page20_high_quantity_asin, 
                    store_page20_new_asin_sales_surge_num, store_page20_new_asin_sales_surge, 
                    store_page20_old_asin_sales_surge_num, store_page20_old_asin_sales_surge, store_location, 
                    store_crawl_time, store_first_category_percent, store_current_category_percent, store_label_type, 
                    store_name, store_page20_price_raise_asin_num, store_page20_price_raise_asin, 
                    store_page20_price_decline_asin_num, store_page20_price_decline_asin, 
                    store_page20_rank_raise_asin_num, store_page20_rank_raise_asin, store_page20_rank_decline_asin_num, 
                    store_page20_rank_decline_asin, store_new_flag
                from {export_tmp_tb}
                ON CONFLICT (seller_id)
                DO UPDATE SET
                    store_asin_total_num = excluded.store_asin_total_num,
                    store_page20_asin_total_num = excluded.store_page20_asin_total_num,
                    store_page20_variant_rate = excluded.store_page20_variant_rate,
                    store_page20_new_asin_total_num = excluded.store_page20_new_asin_total_num,
                    store_page20_new_asin_num_percent = excluded.store_page20_new_asin_num_percent,
                    store_page20_old_asin_total_num = excluded.store_page20_old_asin_total_num,
                    store_page20_old_asin_num_percent = excluded.store_page20_old_asin_num_percent,
                    store_page20_asin_avg_price = excluded.store_page20_asin_avg_price,
                    store_page20_asin_avg_rating = excluded.store_page20_asin_avg_rating,
                    store_page20_asin_avg_comments = excluded.store_page20_asin_avg_comments,
                    store_page20_raise_asin_num = excluded.store_page20_raise_asin_num,
                    store_page20_raise_asin = excluded.store_page20_raise_asin,
                    store_page20_popular_asin_num = excluded.store_page20_popular_asin_num,
                    store_page20_popular_asin = excluded.store_page20_popular_asin,
                    store_page20_high_quantity_asin_num = excluded.store_page20_high_quantity_asin_num,
                    store_page20_high_quantity_asin = excluded.store_page20_high_quantity_asin,
                    store_page20_new_asin_sales_surge_num = excluded.store_page20_new_asin_sales_surge_num,
                    store_page20_new_asin_sales_surge = excluded.store_page20_new_asin_sales_surge,
                    store_page20_old_asin_sales_surge_num = excluded.store_page20_old_asin_sales_surge_num,
                    store_page20_old_asin_sales_surge = excluded.store_page20_old_asin_sales_surge,
                    store_location = excluded.store_location,
                    store_crawl_time = excluded.store_crawl_time,
                    store_first_category_percent = excluded.store_first_category_percent,
                    store_current_category_percent = excluded.store_current_category_percent,
                    store_label_type = excluded.store_label_type,
                    store_name = excluded.store_name,
                    store_page20_price_raise_asin_num = excluded.store_page20_price_raise_asin_num,
                    store_page20_price_raise_asin = excluded.store_page20_price_raise_asin,
                    store_page20_price_decline_asin_num = excluded.store_page20_price_decline_asin_num,
                    store_page20_price_decline_asin = excluded.store_page20_price_decline_asin,
                    store_page20_rank_raise_asin_num = excluded.store_page20_rank_raise_asin_num,
                    store_page20_rank_raise_asin = excluded.store_page20_rank_raise_asin,
                    store_page20_rank_decline_asin_num = excluded.store_page20_rank_decline_asin_num,
                    store_page20_rank_decline_asin = excluded.store_page20_rank_decline_asin,
                    store_new_flag = excluded.store_new_flag,
                    created_time = now(),
                    updated_time = now();         
            """
            DBUtil.engine_exec_sql(engine, after_sql)
        else:
            Templates.save_data(self)

    def run(self):
        self.read_data()
        self.handle_data()
        self.save_data()


if __name__ == '__main__':
    site_name = CommonUtil.get_sys_arg(1, None)
    date_type = CommonUtil.get_sys_arg(2, None)
    date_info = CommonUtil.get_sys_arg(3, None)  # 参数3:年-周/年-月/年-季/年-月-日, 比如: 2022-1
    run_type = sys.argv[4]
    seller_id_tuple = sys.argv[5]
    assert site_name is not None, "site_name 不能为空!"
    assert date_type is not None, "date_type 不能为空!"
    assert date_info is not None, "date_info 不能为空!"
    obj = DwtUserStoreCollectionsInfo(site_name=site_name, date_type=date_type, date_info=date_info, run_type=run_type,
                                      seller_id_tuple=seller_id_tuple)
    obj.run()