1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
"""
@Author : HuangJian
@Description : 时间周期内-搜索词top3的品牌库(排除公司asin统计)
@SourceTable :
①dim_st_detail
②dim_st_asin_info
③dim_asin_detail
④dim_asin_measure
@SinkTable : dim_st_brand_info
@CreateTime : 2023/04/19 09:20
@UpdateTime : 2022/04/19 09:20
"""
import os
import sys
sys.path.append(os.path.dirname(sys.path[0]))
from utils.common_util import CommonUtil
from utils.hdfs_utils import HdfsUtils
from utils.spark_util import SparkUtil
from pyspark.sql.window import Window
from pyspark.sql import functions as F
from utils.db_util import DBUtil
class DimStBrandInfo(object):
def __init__(self, site_name, date_type, date_info):
self.site_name = site_name
self.date_type = date_type
self.date_info = date_info
self.partition_dict = {
"site_name": site_name,
"date_type": date_type,
"date_info": date_info
}
self.hive_table = "dim_st_brand_info"
# 落表路径校验
self.hdfs_path = CommonUtil.build_hdfs_path(self.hive_table, partition_dict=self.partition_dict)
print(f"hdfs_path is {self.hdfs_path}")
app_name = f"{self.__class__.__name__}:{site_name}:{date_type}:{date_info}"
self.spark = SparkUtil.get_spark_session(app_name)
self.partitions_num = CommonUtil.reset_partitions(site_name, 2)
# 初始化全局df
self.df_dim_st = self.spark.sql(f"select 1+1;")
self.df_st_asin = self.spark.sql(f"select 1+1;")
self.df_asin_detail = self.spark.sql(f"select 1+1;")
self.df_st_brand = self.spark.sql(f"select 1+1;")
self.df_asin_measure = self.spark.sql(f"select 1+1;")
self.df_base_brand = self.spark.sql(f"select 1+1;")
self.df_brand_black = self.spark.sql(f"select 1+1;")
self.df_st_key = self.spark.sql(f"select 1+1;")
def run(self):
# 读取数据
self.read_data()
# 逻辑处理
self.handle_data()
# 数据存储
self.save_data()
def read_data(self):
print("======================查询sql如下======================")
# 读取ods_st_key
sql = f"select search_term,cast(st_key as int) as st_key from ods_st_key where site_name = '{self.site_name}' "
self.df_st_key = self.spark.sql(sqlQuery=sql)
print("sql:", sql)
# 读取dim_st_detail,取排名100w的搜索词
sql = f"""select search_term
from dim_st_detail
where site_name = '{self.site_name}'
and date_type = '{self.date_type}'
and date_info = '{self.date_info}'
and st_rank < 1000000;
"""
self.df_dim_st = self.spark.sql(sqlQuery=sql)
print("sql:", sql)
# 读取st_asin的关系
sql = f"""select search_term,
asin
from dim_st_asin_info
where site_name = '{self.site_name}'
and date_type = '{self.date_type}'
and date_info = '{self.date_info}'
group by search_term, asin
"""
self.df_st_asin = self.spark.sql(sqlQuery=sql)
print("sql:", sql)
# 读取dim_asin_detail取asin和brand_name--需排除公司内部asin
sql = f"""
select asin, trim(asin_brand_name) as asin_brand_name
from dim_asin_detail
where site_name = '{self.site_name}'
and date_type = '{self.date_type}'
and date_info = '{self.date_info}'
and length(asin_brand_name) > 2
and trim(asin_brand_name) not in ('null', 'None', 'none', 'Null', '')
and asin not in (select asin from ods_self_asin where site_name = '{self.site_name}')
"""
print("sql:", sql)
self.df_asin_detail = self.spark.sql(sqlQuery=sql)
# 读取dwd_asin_measure,取bsr_orders
sql = f"""select asin, cast(asin_bsr_orders as int) as asin_bsr_orders
from dwd_asin_measure
where site_name='{self.site_name}' and date_type='{self.date_type}' and date_info='{self.date_info}';"""
print("sql:", sql)
self.df_asin_measure = self.spark.sql(sqlQuery=sql).cache()
# 获取品牌词黑名单 从pgsql字典表获取:match_character_dict
pg_sql = f"""select lower(trim(character_name)) as st_brand_name_lower, 1 as black_flag
from match_character_dict where match_type = '品牌词库黑名单'"""
conn_info = DBUtil.get_connection_info("mysql", "us")
self.df_brand_black = SparkUtil.read_jdbc_query(
session=self.spark,
url=conn_info["url"],
pwd=conn_info["pwd"],
username=conn_info["username"],
query=pg_sql
)
def handle_data(self):
# 100w内搜索词和st_asin关联,找到范围内, 搜索词和asin的关系
self.df_st_asin = self.df_dim_st.join(
self.df_st_asin, on=['search_term'], how='inner'
)
self.df_st_asin = self.df_st_asin.join(
self.df_asin_detail, on=['asin'], how='left'
).join(
self.df_asin_measure, on=['asin'], how='left'
)
self.df_st_asin = self.df_st_asin.na.fill({"asin_bsr_orders": 0})
# 按搜索词、品牌分组 对bsr销量进行统计
self.df_st_brand = self.df_st_asin.groupby(['search_term', 'asin_brand_name']).agg(
F.sum("asin_bsr_orders").alias('bsr_orders')
)
# 过滤掉品牌-搜索词为null
self.df_st_brand = self.df_st_brand.filter('asin_brand_name is not null')
# print("self.df_st_brand", self.df_st_brand.show(10, truncate=False))
# 开窗给品牌排序,取top3
brand_window = Window.partitionBy(['search_term']).orderBy(
self.df_st_brand.bsr_orders.desc_nulls_last()
)
self.df_st_brand = self.df_st_brand.withColumn("st_brand_rank", F.row_number().over(window=brand_window))
self.df_st_brand = self.df_st_brand.filter("st_brand_rank<=3")
# print("self.df_st_brand", self.df_st_brand.show(10, truncate=False))
# self.df_st_brand = self.df_st_brand.drop('search_term', 'brand_rank')
# 将品牌名转换小写
self.df_st_brand = self.df_st_brand.withColumn('st_brand_name_lower', F.lower('asin_brand_name'))
# self.df_st_brand = self.df_st_brand.dropDuplicates(['brand_name'])
# 与品牌黑名单df_brand_black,补充黑名单标签
self.df_st_brand = self.df_st_brand.join(
self.df_brand_black, on=['st_brand_name_lower'], how='left'
)
# 非黑名单标签置为0
self.df_st_brand = self.df_st_brand.na.fill({'black_flag': 0})
# 补充st_key
self.df_st_brand = self.df_st_brand.join(
self.df_st_key, on=['search_term'], how='inner'
)
def save_data(self):
# 补全分区字段
df_save = self.df_st_brand.select(
F.col('st_key'),
F.col('search_term'),
F.col('asin_brand_name').alias('st_brand_name'),
F.col('st_brand_name_lower'),
F.col('st_brand_rank'),
F.col('black_flag'),
F.date_format(F.current_timestamp(), 'yyyy-MM-dd HH:mm:SS').alias('created_time'),
F.date_format(F.current_timestamp(), 'yyyy-MM-dd HH:mm:SS').alias('updated_time'),
F.lit(self.site_name).alias('site_name'),
F.lit(self.date_type).alias('date_type'),
F.lit(self.date_info).alias('date_info')
)
df_save = df_save.repartition(self.partitions_num)
partition_by = ["site_name", "date_type", "date_info"]
print(f"清除hdfs目录中.....{self.hdfs_path}")
HdfsUtils.delete_file_in_folder(self.hdfs_path)
print(f"当前存储的表名为:{self.hive_table},分区为{partition_by}")
df_save.write.saveAsTable(name=self.hive_table, format='hive', mode='append', partitionBy=partition_by)
print("success")
if __name__ == '__main__':
site_name = CommonUtil.get_sys_arg(1, None)
date_type = CommonUtil.get_sys_arg(2, None)
date_info = CommonUtil.get_sys_arg(3, None)
obj = DimStBrandInfo(site_name, date_type, date_info)
obj.run()